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Traditional probabilistic design methods are in the lack of capability in representing 

practical design processes. In practice, design of complex engineering system is based 

on a hierarchical process in which system design is decomposed into multiple stages, 

called the building-block process. 

In this research, as a first step in the building-block process, the effects of the 

numbers of coupon and element tests on design weight are studied under various 

uncertainties. Based on a simulation model, structural elements for failure prediction 

under combined loads are designed with two test stages of coupon and element tests. It 

is found that the weight penalty associated with no element test is significant, and it is 

greatly reduced by more element tests , but the effect of the number of coupon tests is 

much smaller unless the failure theory is very accurate. 

Error in reliability of a structure with multiple failure modes originates in errors in 

failure predictions for failure modes. In most cases, however, a single test is performed 

due to limited resources. Here, we developed an approach to reduce errors in multiple 

predictions of failure load with a single test. 
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When a probabilistic approach is applied to design of a structure with multiple 

failure modes, dependence between failures modes is often ignored in order to simplify 

system reliability calculation. A study of the effect of ignoring dependence between 

failure modes on system reliability is carried out. Interestingly, for high system reliability, 

the error decreases regardless strong dependence.
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CHAPTER 1 
INTRODUCTION 

Probabilistic design with multi-stage testing 

Current probabilistic design frameworks assume that the information of all 

uncertainties, either aleatory or epistemic [1], is available at the design stage and fixed 

throughout the product lifecycle. However, for complex engineering system design, 

uncertainties are progressively quantified and updated. That is because system design 

is progressively updated based on evolving design of various components at increasing 

complexity [59,60], and components are progressively validated with multi-stage testing 

[61]. This study is to provide approaches to apply probabilistic design frameworks to 

system design based on multi-stage testing. 

This multi-stage test approach, also referred to the building-block approach shown 

in Fig. 2-1, has been integrated with the structural design process of aircraft [2,3]. The 

first stage of the building block approach is the coupon test that characterizes the 

behavior and statistics of material properties. Element and subcomponent testings are 

followed to characterize failure modes that are not addressed in coupon specimens. 

Note that elements are simple and standard structural components, such as curved 

panels and stiffened panels. Subcomponents typically refer to larger specimens than 

elements and non-standardized configurations [2,3,12]. When elements are tested 

individually, the test can only approximate the boundary conditions applied by adjacent 

elements. Therefore, component (e.g. wing) testing is the part of certification or 

qualification process that ensures elements are also tested under the correct loading 

and boundary conditions [62,63]. 
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The purpose of building-block testing is to prevent failing the certification test by 

reducing uncertainty in failure prediction of complex structures with simple component 

tests in early stages of design [3].  In this dissertation, a probabilistic approach is 

presented for structural element design by predicting conservative element strength 

satisfying a certain safety level based on two test stages, coupon and element tests. 

Aircraft designers use conservative measures, such as A- or B-basis allowables, 

to compensate for uncertainty in material strength prediction as in MIL-HDBK [2]. For 

example, the B-basis introduces conservativeness in two ways. To compensate for 

variability, the B-basis uses the lower 10% value of the material strength distribution. 

However, calculating the lower 10% relies on the number of coupons, which brings in 

epistemic uncertainty. Thus, the B-basis requires an additional 95% confidence level to 

compensate for the epistemic uncertainty. That is, the B-basis provides a value that 

belongs to the lower 10% with 95% probability. The B-basis is calculated based on a 

sample mean and standard deviation with a factor for one-sided tolerance limit with an 

assumed population distribution. MIL-HDBK [2] and Owen et al. [64] presented tables of 

factors with various population distributions.  

Another conservative measure is taken at the element level. To compensate for 

the error in a failure theory, it is common practice to repeat element tests three times 

and then select the lowest test result as a conservative estimate of the failure envelope; 

this process can be interpreted as applying a knockdown factor on the average test 

result. 

These conservative statistical approaches have worked successfully to achieve the 

safety of structural designs. However, they were applied at an individual test stage 
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without considering their overall efficiency to achieve the safety level at the final stage. 

Also, it has not been quantified how much these tests reduce the weight penalty 

compared to the design without tests. 

When we use failure theory to predict the strength of an element, we propagate 

uncertainty in coupons and combine it with uncertainty in the failure theory. There are 

two major sources of epistemic uncertainties (uncertainty associated with lack of 

information) in the process. The first is error in the failure theory to predict failure, and 

the second source is sampling error in material properties measured due to a finite 

number of coupons. Then, we build and test the structural element in order to reduce 

the combined uncertainty. By quantifying the remaining uncertainty after tests, we 

calculate conservative element strength based on the uncertainty and the required 

safety level [2,3,64]. 

However, structural tests have variability due to various uncertainties, such as 

uncertainty in applied loads, boundary conditions, measurements, etc. Repetition of 

tests reduces the uncertainty in test data [5]. The effects of coupon tests and element 

tests on reducing uncertainty is collectively reflected as the amount of reduced 

uncertainty by the tests, which is compensated by design weight to achieve a safety 

requirement as the design weight is inversely proportional to the amount of reduced 

uncertainty. Since the effects of coupon tests and element tests are different, 

quantifying the influences of each set of tests on reducing design weight is an important 

issue for designing with multi-stage testing.  

In the perspective of resource allocation, coupon tests are relatively cheap 

compared to element tests, and therefore, we usually perform more coupon tests 
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(several dozens) than element tests (a handful). It is useful to investigate the effect of 

the number of tests on making a conservative element strength prediction and to 

analyze the tradeoff between the number of coupons and elements for reducing the 

conservativeness. 

There are also several studies investigating the effect of tests on safety and 

reducing uncertainty in computational models. Jiao and Moan [20] investigated the 

effect of proof tests on structural safety using Bayesian inference. They showed that 

proof tests reduce uncertainty in the strength of a structure, and thus provide a 

substantial reduction in the probability of failure (PF). An et al. [4] investigated the effect 

of structural element tests on reducing uncertainty in element strength using Bayesian 

inference. Acar et al. [5] modeled a simplified building-block process with safety factors 

and knockdown factors. Bayesian inference is used to model the effect of structural 

element tests. They show the effect of the number of tests on the design weight for the 

same PF, and vice versa. Jiang and Mahadevan [78] studied the effect of tests in 

validating a computational model by obtaining an expected risk in terms of the decision 

cost. Urbina and Mahadevan [21] assessed the effects of system level tests for 

assessing reliability of complex systems. They built computational models of a system 

and predicted the performance of the system. Tests are then incorporated into the 

models to estimate the confidence in the performance of the systems. Park et al. [22] 

estimated uncertainty in computational models and developed a methodology to 

evaluate likelihood using both test data and a computational model. McFarland and 

Bichon [23] estimated PF by incorporating test data for a bistable MEMS device. 
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This dissertation models the process of predicting conservative strength of an 

element design to ensure a certain level of safety with coupon and element tests and 

simulates the process to quantify the effects of coupon and element tests. 

Estimating reliability of a structure with multiple failure modes for probabilistic 
structural design  

Another issue of this dissertation is probabilistic design of structures with multiple 

failure modes. Structural design with multiple failure modes benefits by applying 

probabilistic design approach. Qu et al. [36] studied that design of cryogenic tanks 

made by composite materials that has two competing failure modes: matrix cracking by 

the residual thermal strains and mechanical failure due to excessive stress in the fiber. 

This study concluded that the high PFs of deterministic designs motivate probabilistic 

design. Acar et al. [82] investigated the tradeoff between airplane design safety and 

design weight for a wing and a horizontal tail. The study showed that balancing safety 

margins between the components with probabilistic design gives a lighter and even 

safer design than applying the same safety margins for all components.  

In probabilistic design, taking account of the effect of structural tests on reducing 

error in evaluating reliability of structures is an important issue as mentioned in the 

previous section. Designers rely on computational models to predict failures of design 

and to evaluate reliability according to uncertainties. However, computational models 

have epistemic uncertainty due to the lack of knowledge of physics [69]. Structural tests 

are followed to reduce the epistemic uncertainty in computational models by calibrating 

the models. By reducing the uncertainty in computational models, error in evaluating 

reliability is also reduced as a consequence of tests. To clearly quantify the effect of 
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tests on reducing the error in reliability calculation, the contribution of epistemic 

uncertainty has to be separated from that of the other uncertainties.  

Separated treatment of epistemic uncertainty has been introduced by literatures. 

Noh et al. [37] quantified the contribution of epistemic uncertainty caused by the finite 

number of samples in input parameters as uncertainty in output. Matsumura et al. [75] 

and Villanueva et al. [76] considered the effect of epistemic uncertainty in a computer 

model on estimating PF of an integrated thermal protection system of a space vehicle 

and obtained a distribution of the PF to model the effect of epistemic uncertainty on the 

PF. 

In this dissertation, since a method for multiple failure modes is needed to be 

developed, the epistemic uncertainties in potential failure modes are modeled using a 

joint PDF and the effect on reducing the uncertainty by tests is modeled by obtaining a 

distribution of PF. The effect of tests on reducing the uncertainty is translated into the 

PF distribution.  

When we have two failure modes, we have two epistemic uncertainties. However, 

a single test is usually available due to restricted budget for testing [7,18] and only one 

failure mode is observed from the test. It may appear that only one of two errors can be 

reduced by the test, a strategy to reduce error in both failure predictions with a single 

test is developed. 

A thin composite panel with a hole with buckling and strength failure modes is 

used as an application example of this study. Composite materials have been widely 

used for aircraft structures due to superior stiffness per unit weight and better corrosion 

and fatigue resistance than aluminum alloys [71]. The recently developed Boeing 787 
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and Airbus 350 aircraft use composite materials for approximately 50% of structural 

weight [8]. However, these good properties come at the cost of additional stiffness and 

strength parameters that need to be estimated, and which are often correlated [14]. 

Therefore, correlations between composite material properties are taken into account. 

Since buckling failure of the curved composite panel is very sensitive to imperfections 

[72,73,74], uncertainties in geometric imperfections are taken into account for 

calculating PF. Nonlinear analysis is used to predict buckling load and strain using 

Abaqus. [79].  

Another interesting issue of applying probabilistic design approach is to consider 

statistical correlation between failure modes when calculating PF. We propose a 

method to calculate PF by using decomposed distributions of structural responses 

without losing statistical correlation between failure modes. It has an obvious advantage 

that building the decomposed distributions requires estimating only a handful of 

parameters for the decomposed distributions. 

The Effect of Ignoring Dependence between Failure Modes for Calculating System 
Reliability  

Evaluating system reliability has been recognized as an important step in design. 

Although many reliability analysis methods have been developed, calculating system 

reliability including dependence between failure modes is still challenging [80].  

Reliability analysis methods can largely be categorized by sampling-based 

methods (e.g., Monte Carlo Simulation (MCS), importance sampling and surrogate-

based methods) and analytical methods (e.g., first-order reliability method (FORM) and 

second-order reliability method (SORM)).  
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MCS is a universal method, but it can be computationally expensive to achieve a 

reasonable accuracy, even when using importance sampling techniques to reduce the 

variance of MCS [41-43]. To evaluate reliability, surrogate-based methods have been 

developed to reduce computational cost [44]. Sampling-based methods using 

surrogates can model dependence between failure modes, but the computational cost 

of constructing surrogate models increases rapidly with dimensions, often called the 

curse of dimensionality [45].  

Since analytical methods are computationally efficient, they are computationally 

favorable to calculate reliability [43,46]. However, they have difficulties in accounting for 

dependence between failure modes. Consequently, approximate approaches, such as 

the lower-upper bound method [47-49] and PNET method [56], have been developed.  

However, it is not well known that dependence between failure events can be 

weak when PF is low [38]. In other words, the effect of dependence between failure 

events can be ignored at a high reliability level.  

Often structures are required to be highly reliable [39]. For example, the U.S. 

Army’s introduction of a structural fatigue reliability criterion for rotorcraft has been 

interpreted as a requirement for component lifetime reliability of 0.999999 [40]. With 

such a high level of reliability, failures are extremely rare events. For such rare events, 

dependence between failure modes often becomes weak. 

Ignoring dependence between input uncertainties can result in large errors in 

calculating system reliability [42]. Consequently modeling and identifying dependence 

between input model uncertainty is an important issue [37,50]. However, surprisingly, 
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ignoring dependence between failure modes, which is recognizable as dependence 

between output uncertainties, may not result in large errors in system reliability. 

In this dissertation, the error in calculating system reliability on the strength of 

dependence between two failure modes and the ratio between the two marginal failure 

modes is investigated. For varying strength of dependence and the ratio between two 

marginal failure modes, the error due to ignoring dependence is calculated in terms of 

system reliability. The errors in system PF and in system reliability are presented. The 

reason of the behavior of the error will be explained. To study the effects of different 

dependence models, copulas are introduced and applied to define various 

dependences. A RBDO problem of two trusses is solved with two ways of calculating 

system reliability, with and without considering dependence. The effects of ignoring 

dependence on the optimal solution and the corresponding design weight of the RBDO 

problem are shown. 

Objectives 

The main objectives of this dissertation are as follows: 

1. Developing a method to estimate a conservative element strength for required 
safety level and quantifying the effect of the multi-stage testing on reducing design 
conservativeness and the corresponding design weight while ensuring a certain 
safety level in terms of the number of coupon tests and element tests. 

2. Developing a strategy to include the effect of tests and to efficiently reduce the 
error on calculating system reliability of a curved composite panel with correlated 
buckling and strength failure modes with a single structural test. 

3. Investigating the effect of ignoring dependence between failure modes on 
evaluating system reliability in terms of the dependence strength, the dependence 
model and the ratio between individual PFs with various examples using copulas. 
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Outline 

Chapter 2 introduces a strategy of predicting conservative element strength to 

achieve a certain safety level. The effects of coupon and element tests on reducing 

uncertainty in predicting the element strength and the corresponding conservativeness 

and design weight are demonstrated. Chapter 2 allows us to identify uncertainty 

sources in predicting element strength and to model the identified uncertainties. Then 

the way of using the quantified uncertainty to predict the conservative element strength 

is presented. From creating a model simulating the prediction process, the effects of 

tests on the conservativeness in the element strength prediction and the corresponding 

expected design weight are quantified. The effects of tests on different situations are 

also simulated and studied using the model. 

Chapter 3 introduces the effect of an element test on the PF distribution with 

correlated multiple failure modes. Two typical static failure modes, correlated buckling 

and strength failure modes and their errors in numerical model to predict the failures are 

modeled. The effect of errors to estimate PF of a structure is quantified. Also the 

contribution of a single element test to reduce the errors in the numerical model is 

calculated and translated into a distribution of PF. A decomposition method to consider 

correlation between failure modes is presented and is used to calculate system PF. As 

demonstration examples, one simply supported beam and a curved composite panel 

with a hole are used. 

Chapter 4 shows the effect of ignoring dependence between failure modes on 

evaluating system reliability. In this chapter, structures having a specific dependence 

model between two failure modes and system reliability are assumed and the errors due 

to ignoring dependence are measured as a function of the dependence model and the 
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system reliability. Dependence is typically modeled with a joint PDF and a dependence 

measure, such as the linear correlation coefficient or Kendall's tau. For investigating the 

effects of various dependence models, as well as the widely known bivariate normal 

distribution, copulas are employed to model various possible joint PDFs parametrically.  

Finally in Chapter 5 we provide concluding remarks and future work suggestions. 
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CHAPTER 2 
HOW COUPON AND ELEMENT TESTS REDUCE CONSERVATIVENESS IN 

ELEMENT FAILURE PREDICTION 

Motivation and Scope 

Uncertainty has always been a major concern in structural design. For example, 

predicting the strength of a structural element has two major sources of epistemic 

uncertainty (uncertainty associated with the lack of information). The first comes from 

errors in failure prediction based on calculated stresses and a failure theory. The 

second source is errors in measuring variability of material properties. Coupon tests are 

performed to measure material variability, but the estimated variability also has error 

due to the limited number of coupons.  

 In this dissertation, we assume that with an infinite number of coupons and 

elements, the epistemic uncertainty associated with samples and failure theory can be 

eliminated. With a finite number of tests, the epistemic uncertainty is compensated for 

by using a conservative mean value at the 95% confidence level, in the context of the B-

basis. The aleatory uncertainty can then be compensated for either by 90% of the 

population or by specifying probabilities of failure. We focus on the effect of the number 

of tests on the conservative estimate of element strength and the resulting weight 

penalty compared to the case with an infinite number of tests. To have the conservative 

estimate, we predict the mean element strength and its uncertainty by combining two 

uncertainties from coupon tests and a failure theory, using a convolution integral. Then, 

Bayesian inference is incorporated with element tests in order to reduce the epistemic 

uncertainty. With the proposed two-stage uncertainty model, it is possible to identify the 

effect of two types of tests on reducing uncertainty and corresponding conservativeness 

and weight penalty. 
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 The chapter is composed of six sections. First section is to introduce the building-

block test process used in this dissertation, which is composed of coupon and element 

test stages, and sources of uncertainty. Second section is to provide uncertainty 

modeling of the building-block test process to estimate the element strength and its 

uncertainty. Third section is to introduce different measures that are used to evaluate 

the efficiency of different tests. This third section has three subsections: coupon tests, 

element design and element tests. Fourth section introduces different measures that are 

used to evaluate the efficiency of different tests. Fifth section is to presents numerical 

results. Finally, summary of this chapter is presented. 

Uncertainty Sources in Design with Building-Block Approach 

For aircraft structures, the building-block test process (Fig. 2-1) is used to find 

design errors and to reduce uncertainties in design and manufacturing. At each level, 

analytical/numerical models are calibrated to account for discrepancies between model 

prediction and test results. Since the errors are unknown at the modeling stage, they 

may be modeled as uncertainty (epistemic), and test results may be used to reduce the 

uncertainty. Starting from simple coupon tests at the bottom level, structural complexity 

gradually increases further up the building-block pyramid. The number of tests gradually 

reduces from bottom to top; for example, 50 coupons, 3 elements, and 1 component. In 

higher-level tests, it is difficult to understand deviations from analytical predictions, tests 

are more expensive and any design modification can be expensive. The building-block 

test process is designed to detect modeling errors at a lowest level.  

Although building-block tests are designed to reduce uncertainty, it is difficult to 

quantify how much tests in each level can contribute to uncertainty reduction, which is 

the main objective of this dissertation. Once the contribution of tests to uncertainty 
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reduction is understood, a design engineer can decide how to allocate resources to 

different levels in order to achieve the target reliability at minimum cost. 

Although the actual building-block test process has many levels, this dissertation 

only considers coupon and element tests to demonstrate the effect of these tests on 

uncertainty reduction. Table 2-1 shows the objectives of these two tests and the 

sources of uncertainty.  

In this dissertation, the failure stress of a structural element is simulated with 

randomly generated test results. True distributions are used only for generating test 

samples and assessing the estimated failure stress. 

Modeling Uncertainty in the Building-Block Test Process 

In order to model the two-level building-block test process, it is assumed that the 

strength of coupons and elements follows a normal distribution due to material 

variability. This assumption can easily be removed when actual test results are available 

and the type of distribution can be identified using various statistical methods, such as 

the one in MIL-HDBK [2]. In the following subsections, uncertainties at each stage are 

modeled. 

Coupon Test: Modeling Uncertainty in Estimating Statistical Properties 

Due to inherent variability, the material strength shows a statistical distribution. 

Coupon tests are conducted to estimate the distribution and to determine regulatory 

(e.g., FAA) strength allowables (e.g., A-basis or B-basis) that compensate for the 

uncertainty. It is assumed that the true material strength, 
,ĉ true , follows a normal 

distribution, as 

 
 , , ,

ˆ ~ ,c true c true c trueN  
 

(2-1) 
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where ,c true  and ,c true  are, respectively, the mean and standard deviation of 
,ĉ true . The 

circumflex symbol represents a random variable. The subscript “c” is used to denote 

coupons. In this dissertation, Eq. (2-1) is only used for the purpose of simulating coupon 

tests; the true distribution is unknown to the designer.  

Since the true distribution parameters are estimated with a finite number of 

coupons, the estimated parameters have sampling uncertainty (or error). Thus, it is 

natural to consider these parameters as distributions rather than deterministic values. In 

this dissertation, this estimated distribution is called the possible true distribution (PTD) 

of the parameter. For example, if 
,c true is estimated from 50 coupons, with a sample 

mean of 1.02 and sample standard deviation of 0.1, then the PTD of the mean is a 

distribution following N(1.02, 0.1).  

In this setting, the estimated material strength essentially becomes a distribution of 

distributions. The PTD of material strength can be obtained using a double-loop Monte 

Carlo simulation (MCS), as shown in Fig. 2-2. In the figure, the outer loop generates N 

samples of the two distribution parameters, from which N pairs of normal distributions, 

N(μi, σi), can be defined. In the inner loop, M samples of material strengths are 

generated from each N(μi, σi). Then, all N×M samples are used to obtain the PTD of 

material strength, which includes both material variability and sampling errors. 

In order to model the above MCS process analytically, the PTD of material 

strength, 
,ĉ Ptrue , is firstly defined as a conditional distribution as 

    , , , , , , ,
ˆ ˆ ˆ, ~ ,c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c PtrueN         (2-2) 
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where the left-hand side is a conditional random variable given 
,c Ptrue  and 

,c Ptrue . Since 

,
ˆ

c Ptrue and 
,

ˆ
c Ptrue are random, Eq. (2-2) corresponds to an incident of possible true 

distributions. In Fig. 2-2, randomly generated 
i  and 

i  correspond to 
,c Ptrue and 

,c Ptrue , 

respectively.  

Note that 
,

ˆ
c Ptrue and

,
ˆ

c Ptrue
 
depend on the number of coupons. With cn  coupons, 

,
ˆ

c Ptrue  

is nothing but the distribution of the sample mean and can be estimated as 

 
,

, ,
ˆ ~ ,

c test

c Ptrue c test

c

N
n


 

 
 
 

 (2-3) 

where 
,c test  and 

,c test  are, respectively, the mean and standard deviation of coupons. 

With an infinite number of coupons, 
,

ˆ
c Ptrue  will become a deterministic value; i.e., no 

sampling error. 

It is also well-known that the standard deviation 
,

ˆ
c Ptrue  follows a chi-distribution of 

order 1cn  . In a way similar to the mean, 
,

ˆ
c Ptrue  can be estimated as 

 

 ,

,
ˆ 1

1

c test

c Ptrue c

c

n
n


  

  
(2-4) 

where  1cn   is the chi-distribution of the order 1cn  . 

Let  , ,c Ptrue c Ptruef   and  , ,c Ptrue c Ptruef   be the PDFs of 
,

ˆ
c Ptrue  and 

,
ˆ

c Ptrue , 

respectively. Then, the PDF of 
,ĉ Ptrue is derived as 

 

 

     

, ,

, , , , , , , , ,
0

| ,

c Ptrue c Ptrue

c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue

f

f f d d 



       
 


    

(2-5) 
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where the notation  | ,x a b  denotes the value of a normal PDF with mean a and 

standard deviation b at x. 

Figure 2-3 compares the PDF of 
,
ˆ ~ (1.1,0.077)c true N  with that of 

,ĉ Ptrue  with 

different numbers of coupons. In the case of 30 coupons, the samples have 

, 1.053c test   and 
, 0.096c test  . Using Eqs. (2-3) and (2-4), the standard deviations of 

,
ˆ

c Ptrue  and 
,

ˆ
c Ptrue  are estimated to be 0.018 and 0.013, respectively, which reflect the 

randomness of the samples. Note that in the case of 30 coupons, the mean was slightly 

underestimated, but a large standard deviation compensates for it. In the case of 80 

coupons, the samples have 
, 1.113c test   and 

, 0.083c test  . The standard deviations of 

,
ˆ

c Ptrue  and 
,

ˆ
c Ptrue  are 0.009 and 0.007, respectively. As expected, 

,ĉ Ptrue  with 80 

coupons yields a narrower estimate than that of 30 coupons. 

Element Design: Combining Uncertainties  

To design a structural element, the material strength from coupon tests must be 

generalized to multi-axial stress states using a failure theory. Since the failure theory is 

not perfect, additional error (i.e., epistemic uncertainty) is introduced, which needs to be 

combined with the sampling error in the coupon test. Since the uncertainty in element 

strength can be represented using the distributions of the mean and standard deviation, 

the uncertainties of these two random variables are modeled separately [26]. 

A failure theory provides a relation between uni-axial strength and multi-axial 

strength. In this dissertation, this relation is represented using a prediction factor 
3 ,d truek   

as 

 , 3 , ,e true d true c truek   (2-6) 
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where 
,c true  is a true uni-axial material strength, and 

,e true  is a true multi-axial equivalent 

strength. Subscript “e” is used to denote that the variable is for an element. For 

example, when the von Mises criterion is used, 
3 , 1d truek  . The relation between the two 

mean values can be obtained from Eq. (2-6) as 

 , 3 , ,e true d true c truek 
 

(2-7) 

Again, 
3 ,d truek  is unknown to designers; only its estimate 

3 ,d calck  is given from the 

failure theory. Therefore, the epistemic uncertainty in the failure theory can be 

represented using the PTD of the prediction factor as 

 
 3 , , 3 ,

ˆ ˆ1d Ptrue k Ptrue d calck e k 
 

(2-8) 

where error 
,

ˆ
k Ptruee is assumed to follow a uniform distribution with bounds of ±be, which 

reflect the designer’s confidence in the failure theory. Then, the designer’s estimated 

relationship corresponding to Eq. (2-7) can be written as 

 , 3 , ,
ˆˆ ˆ

e Ptrue d Ptrue c Ptruek 
 

(2-9) 

Figure 2-4 shows the process of obtaining 
,

ˆ
e Ptrue  through MCS. First, N samples 

from 
,

ˆ
c Ptrue  and M samples from 3 ,

ˆ
d Ptruek  are generated. Then, 

,
ˆ

e Ptrue  is estimated from 

N×M samples that are obtained by taking every possible combination of the two sets of 

samples.  

In this dissertation, a convolution integral is used to calculate the PDF of 
,

ˆ
e Ptrue . 

The convolution integral provides an accurate PDF using numerical integration, 

whereas MCS brings in additional uncertainty. A comparison between MCS and the 
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convolution integral is given in the example section. In the case of a normally distributed 

mean and uniformly distributed error, the PDF of 
,

ˆ
e Ptrue  can be written as 

 

 
 

 
,

,

1 ,

, , , , ,

,1

1
| ,

2

e Ptrue

e

e Ptrue

e

b c test

e Ptrue e Ptrue c Ptrue c test c Ptrue

e c Ptrue cb

f d
b n






    







 
  

 
 


 

(2-10) 

where eb is error bound of the ,
ˆ

k Ptruee  and 3 , 1d calck 
 
is assumed. See Appendix A for 

detailed derivations. The integral domain is divided to 200 segments, and the integral is 

evaluated using Gaussian quadrature with 3 points for each of the 200 segments. 

 Figure 2-5 shows the PDF of typical 
,

ˆ
e Ptrue  for nc = 10 and 50. As the number of 

coupons increases, the PDF approaches a uniform distribution, which corresponds to 

the uncertainty in the failure theory. When the number of coupons is small, the 

distribution has a long tail because of sampling errors in the coupon tests. This 
,

ˆ
e Ptrue  

serves as the prior distribution representing the designer’s knowledge before element 

tests. 

Unlike the mean, there is only a weak relationship between the standard deviation 

of coupon strength and that of element strength. Usually test conditions are well 

controlled to minimize uncertainty; the standard deviation of the test is substantially 

smaller than that of material properties. The distribution of 
,

ˆ
e Ptrue  is defined as a uniform 

distribution with lower and upper bounds as   

 

 
 

 , , ,

1
,upper lower

e Ptrue e Ptrue e Ptrue e eupper lower

e e

f I    
 

   


 

(2-11) 

where  I  is the indicator function upper

e and lower

e  are upper and lower bounds of the 

standard deviation of element strength, respectively. These bounds are estimated to 

cover a true standard deviation of the element test. 
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Element Test: Bayesian Inference to Reduce Errors 

The PTDs in Eqs. (2-10) and (2-11) are the combined uncertainties from (a) 

material variability, (b) sampling errors in coupon tests and (c) error in the failure theory. 

Although material variability will always exist, the other two epistemic uncertainties can 

be reduced using element tests. In this section, the effect of element tests on reducing 

uncertainty is modeled using Bayesian inference.  

For the purpose of Bayesian inference, Eqs. (2-10) and (2-11) are used as 

marginal prior distributions. Since no correlation information is available, these 

distributions are assumed to be independent. Therefore, the prior joint PDF is given as  

 
     , , , , , ,,init

e Ptrue e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f f     
 

(2-12) 

In Bayesian inference, the updated joint PDF with ne number of element tests is 

expressed as 

 
     , , , , , ,

1

1
, , ,

en
upd i init

e Ptrue e Ptrue test e Ptrue e Ptrue e Ptrue e Ptrue

i

f f
A

     


   
(2-13) 

where A is a normalizing constant and  , ,,i

test e Ptrue e Ptrue  is the ith likelihood function for 

given 
, ,,e Ptrue e Ptrue  . From the assumption that the true element strength 

,ê true follows a 

normal distribution and by ignoring errors associated with the test, the likelihood 

function can be defined as a probability of obtaining test result 
,

i

e test  for given 

, ,ande Ptrue e Ptrue   as 

    , , , , ,, | ,i i

test e Ptrue e Ptrue e test e Ptrue e Ptrue       (2-14) 
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Note that the likelihood function is not a probability distribution, but a conditional 

probability. The numerical scheme to evaluate the updated joint PDF is explained in 

Appendix B. 

Using the updated joint PDF, the marginal PDFs of 
, ,ande Ptrue e Ptrue   can be obtained 

as 

    , , , , ,,upd upd

e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f d    



   (2-15) 

    , , , , ,,upd upd

e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f d    



   (2-16) 

The above distributions represent the uncertainty in estimating the mean and 

standard deviation of the element strength. The standard deviations of distributions in 

Eqs. (2-15) and (2-16) are measures of remaining uncertainty after the element tests. 

Conservative Prediction based on the Updated Possible True Distribution 

In common practice, element strength prediction is updated with the lowest 

element test result of three tests and used as a design allowable. The process can be 

interpreted as applying a knockdown factor on the test average. In this paper, a 

conservative estimate of the mean element strength is used as a design allowable. 

If a conservative estimate is wanted, the low 5th percentile of ,

upd

e Ptruef
 can be used for 

the 95% confidence level. The mean values of distributions in Eqs. (2-15) and (2-16) 

are, respectively, the estimate of the mean and standard deviation of element strength. 

The 5th percentile of the marginal PDF for the mean of element strength is expected to 

be less than the true mean of element strength with a 95% confidence level. The 5th 

percentile, 0.05 , is calculated using Eq. (2-15) as 

 

 
0.05

, 0.05upd

e Ptruef x dx






 

(2-17) 
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Figure 2-6 illustrates the effect of one element test on calculating the 5th 

percentile. In this illustration, we chose the coupon tests to have the true mean, and the 

element test to have the true mean of the element strength. Since the true mean of 

coupon test and the true mean of element test are assumed to 1 and 0.95, the element 

strength prediction based on failure theory is unconservative by 5%. However, by 

taking, the 5th percentile, the error in element strength prediction is compensated. 

Figure 2-6 shows the substantial reduction in uncertainty afforded even by a single 

element test. As a consequence, the 5th percentile is actually higher after the test, 

allowing a reduction in the weight. Note that the distribution is a marginal distribution of 

a posterior distribution so that it has a sharp peak. 

The results shown in Figure 2-6 are merely an illustration for a particular set of 

coupon and element test result. To see a general observation, we repeated evaluating 

the 5th percentile for N  random sets of coupon and element test results (N=100,000 

here) and the distributions of the 5th percentiles shown in Fig. 2-7 were obtained. Due 

to the variability in test, the 5th percentile also has variability that is shown as the 

distributions in Fig. 2-7. 

In Figure 2-7, the area of the gray shade is the probability of having an 5th 

percentile that is larger than the true mean element strength. Since design allowables, 

which are larger than the true mean, lead to unsafe design, the probability is referred as 

the probability of unsafe design (PUD) herein. PUD is calculated with the N random sets 

of test results as follows: 

 
 0.05 ,

1

1
PUD

N
i

e true

i

I
N

 


 
 

(2-18) 
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When we design the truss with the 5th percentile, we expect that the design will 

have PUD of 5%. However, it is not guaranteed since prior distribution affects the 5th 

percentile and the prior distribution is based on an element strength estimate using a 

failure theory. For example, a prior based on an un-conservative failure theory gives 

more weight for un-conservative errors than conservative errors. However, the tendency 

can be reduced by updating the prior with element tests. The effects of the prior on PUD 

are illustrated through examples. 

Assessing the Merits of the Numbers of Element and Coupon Tests 

The objective of this section is to assess the effect of coupon and element tests on 

reducing uncertainty, estimating design allowables and the corresponding weight 

penalty. For that purpose, a single set of test results is generated to calculate the 5th 

percentile and to compute the corresponding weight penalty due to conservativeness. 

These results are compared with the weight obtained with an infinite number of coupon 

and element tests. Since the results with a single set of tests are likely to be biased due 

to sampling error, the above process is repeated (100,000 times) to estimate the 

average weight penalty.  

With an infinite number of tests, prediction should be the same with the true 

element mean, 
,e true

, regardless of variability. If a truss member is designed with an 

axial load, the weight penalty due to the conservativeness in the 5th percentile is 

calculated as 

 
 ,0.05 0.05

, 0.05

/
1 100 1 100 1 100 %

/



 

    
              
    

i i
e true

i i

e true

A F
w

A F  

(2-19) 

where index i represents the ith set of tests results. 
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When 
iw  is 3% for (10/5), it means that a design with 10 coupon tests and 5 

element tests is 3% heavier than a design with an infinite number of tests. Negative 

weight penalty indicates that the design is unsafe that the design allowable is larger 

than the true mean. 

Figure 2-8 illustrates the weight penalty distribution, mean weight penalty, 95% 

weight penalty and PUD. The 0% weight penalty (the black filled circle) represents 

design weight with an infinite number of tests. 

The mean of the weight penalty (the hollow circle) represents expected 

conservativeness in the design. The 95% weight penalty (the grey filled circle) is 

representing weight penalty for very conservative designs due to variability in tests. That 

can be interpreted as that the probability of having more conservative design weight 

than the 95% weight penalty is 5%. Those measures are calculated from N sets of test 

results (N = 100,000 here) as follows: 

 
0.05

1

1




 
N

i

i

w
N  

(2-20) 

 
 0.95 0.95

1

1 N

i

i

P I w w
N 

 
 

(2-21) 

where i is the index of N test sets and the subscript 0.95 of P0.95 represents that 

conservativeness in predicting element strength is 95% that P0.95 is 0.95. 

With N repetitions, N 5th percentiles are collected, and they are varied due to 

variability in test. Eq. (2-20) is to calculate the mean of weight penalty. Eq. (2-21) is to 

calculate the 95% percentile of weight penalty of the N sets of test results. For example, 

with 100,000 samples, 95th percentile w0.95 is 95,000th 5th percentile of sorted samples 

in ascending order. 
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Since a design with a 5th percentile larger than the true mean element strength is 

defined as an unsafe design, PUD in Fig. 2-8 is exactly the same with PUD in Fig. 2-7 

when N sets of test results for two distributions are the same.  

This procedure needs to be performed for different realizations of the epistemic 

uncertainty. Here, for illustration, we repeat for four cases, 1% and 5% unconservative 

errors and 1% and 5% conservative errors. These appear to be sufficient to illustrate the 

effect of different values of the epistemic uncertainty. 

Illustrative Examples for Estimating a Knockdown Factor based on Uncertainty 
Quantification 

In this section, the effect of the number of tests is investigated in two steps. First, 

the conservative mean of the element strength is predicted using a single set of tests, 

after which the average prediction is estimated with multiple sets of tests. 

The Effect of the Number of Tests with a Single set of Tests 

In this section, estimation of mean element strength is illustrated with a single set 

of coupon and element tests. The test results were randomly generated from the true 

distributions defined in Table 2-2. The difference between the element mean and the 

coupon mean represents error in the failure theory, as assumed in Eq. (2-7). Since 

3 , 1.0d calck   is assumed in this dissertation and 
3 , , ,/d true e true c truek    is 0.95, the failure 

theory overestimates the element strength; that is, the error in the failure theory is 

unconservative. Randomly generated test results are given in Table 2-3. The coupon 

test column presents sample mean and sample standard deviation that will be used to 

generate coupon samples, and the element test column orderly presents element test 

results. For example, for 10 coupons and 3 elements (10/3), the mean and standard 

deviation of coupons were 0.972 and 0.091, respectively, and the first three data, 0.945, 
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0.955 and 0.987, are used as for three element test results. For four element test 

results, the first four data, 0.945, 0.955, 0.987 and 0.953 are used. The true distribution 

is only used for the purpose of simulating tests.  

To estimate the mean of element strength, the prior is constructed based on the 

coupon test results and error bounds as shown in Eqs. (2-10) and (2-11). Table 2-4 

gives the assumed error bounds eb for the mean and ,lower upper

e e    for standard 

deviation. Recall that the error bounds represent the current estimate of the maximum 

error in the failure theory. Detailed procedure of numerical calculation is given in 

Appendix A.  

Table 2-5 summarizes the 5th percentile value ( 0.05 ) and the weight penalty after 

Bayesian update. It is observed that the effect of element tests is more significant than 

that of coupon tests. As the number of element tests increases between ne = 1 and 5, 

weight penalty decreases from 4-6% to 1.4-2.3%, and a 5th percentile strength 

converges to 0.95 monotonically. However the effect of the number of coupon tests is 

ambiguous and no clear trend is observed. This is because the error in the failure theory 

(Table 2-4) is much larger than the sampling error in coupons. For the cases of 50 and 

90 coupons, ne = 1 estimates more conservativeness than ne = 0 because the particular 

element test results happen to be very conservative, as shown in Table 2-3 (0.896 and 

0.917 from a normal distribution with the mean of 0.95 and the standard deviation of 

0.0285). 

The Effect of the Number of Tests averaged over Multiple Sets of Tests 

The results from the previous subsection depend on the particular samples of coupons 

and elements. In order to measure the expected effect of tests, the same process is 
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repeated 100,000 times with randomly generated samples, from which 100,000 weight 

penalties are generated. The effect of the number of tests on the weight penalty is 

analyzed with three measurements, the mean and 95th percentile of the weight penalty 

and the probability of unsafe design (PUD). Two scenarios associated with epistemic 

uncertainty in the failure theory are considered.  

The first scenario addresses the effect of relatively large epistemic uncertainty in 

the failure theory (
eb = 10% ) compared to that in coupon samples. With 7% COV in 

material strength, the uncertainty in the mean coupon strength is small, even with ten 

coupons. The second scenario examines the effect of relatively small epistemic 

uncertainty in the failure theory ( eb = 2% ). Each scenario is further divided into two 

cases: unconservative and conservative failure theory. The true mean of the element 

tests and its error bounds are set to reflect each scenario as shown in Table 2-6; the 

other settings are the same as the previous single set example.  

The effect of the numbers of tests is related to the level of uncertainty in the 

coupon test and the failure theory. Increasing the number of coupon tests can reduce 

the uncertainty in the coupon test and the uncertainty in the failure theory can be 

reduced by increasing the number of element test. Since the uncertainty in predicting 

the 5th percentile is the combined uncertainty of these uncertainties, the contribution of 

each test is related to the relative degree of uncertainty. For example, if the uncertainty 

in the failure theory is larger than that of the coupon test, increasing the number of 

element tests is more efficient to reduce the combined uncertainty than increasing the 

number of coupon tests. 
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When the failure theory has relatively large epistemic uncertainty, the distributions 

of weight penalties as functions of the number of tests are shown in Fig. 2-9 for both 

conservative and unconservative failure theories. nc=50 and ne=3 are assumed as the 

nominal numbers of tests. The effects of the number of element and coupon tests are 

shown around the nominal numbers. It is shown that ne is far more influential than nc for 

shifting the distribution to a less conservative region and narrowing it. 

With no element tests, the distribution is narrow, since it represents only the 

sampling uncertainty in 50 coupon tests. As the number of element tests increases, the 

distribution is first widened for a single element test, because a single test is quite 

variable, and then gradually narrowed. The updated distribution is also shifted closer to 

0% weight penalty. For the unconservative case, Figure 2-9A, the shift is small because 

the conservativeness in the design with the unconservative failure theory is small. It is 

unusual that no element test distribution has 0% unsafe design even with un-

conservative failure theory. This is because the prior distribution gives very conservative 

design allowable. As shown in Fig. 2-5, the prior distribution is similar to the uniform 

distribution, and the updated distribution is similar to a bell shaped normal distribution. If 

the prior and the updated distributions have the same standard deviation, the prior 

distribution has much conservative 5th percentile than that of the updated distribution, 

and the design allowable from the prior is much more conservative than that from the 

updated distribution. For example, 5th percentile of the uniform distribution with 

standard deviation of 1 is 0.1th percentile of the standard normal distribution. However, 

for the conservative case, Figure 2-9C, the shift is large since the conservative failure 

theory provides a very conservative design 
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Tables 2-7 and 2-8 summarize the distributions with three statistics–mean weight 

penalty, 95th percentile and PUD–in terms of the number of tests.  

We first consider the case of minimal testing with only 10 coupon tests and no 

element tests. For the case of unconservative failure theory, shown in Table 2-7, 

minimal testing will cost us a 5.2% weight penalty on average, and a 2% chance that we 

will end up with unconservative design. For the case of conservative failure theory, in 

Table 2-8, the weight penalty shoots up to 16.3% and we do not run the chance of 

unconservative design. The weight penalties with the 95th percentiles (corresponding to 

tests that happen to be on the conservative side) are about 10% higher. 

With a single element test, the weight penalty drops significantly to 3.1% for the 

unconservative failure theory, in Table 2-7, and to 4.3% for the conservative case in 

Table 2-8. However, with only a single element test, we have a much higher chance of 

unconservative design: PUD of 10% and 5%, respectively. This is because the 

characteristics of failure theory is reflected on the prior and PUD. For un-conservative 

failure theory with 5% error, in Table 2-7, PUDs with a single element test are less than 

10%, and they converge to 5% as the number of element tests increases. For 

conservative failure theory with 5% error, PUDs with a single element test are 5%, 

which are more conservative than PUDs with un-conservative failure theory presented 

in Table 2-7 as expected. However, the PUD is increased to 7% at 3 elements and then 

decreased to 6% for 5 elements. This unexpected behavior is related to the prior 

distribution with non-Gaussian shape, which is shown in Fig. 2-5, but PUDs always 

converge to 5% as the number of element tests increases. For no element tests, PUD is 

very close to zero. This is because of the difference in the shape of distribution. The 5th 
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percentile of prior, which resembles uniform distribution, is much more conservative 

than that of posterior distribution updated once with a single element test, which 

resembles Gaussian distribution, due to the shape of distribution. For example, the 5th 

percentile of a uniform distribution with standard deviation of 1 is 0.1th percentile of a 

standard normal distribution. The weight penalties continue to drop substantially and the 

PUDs converge to 5% with more element tests. On the other hand, the effect of adding 

coupon tests is much smaller, and increasing coupon tests from 50 to 90 hardly make 

any difference.  

The fact that, for this example, element tests are more important than coupon tests 

can be understood by observing the magnitude of two epistemic uncertainties. The 

variability in the coupon strength is 7% (see Table 2-2), so even with 10 coupon tests, 

the standard deviation of the mean coupon strength is only 2.2%, which is epistemic 

uncertainty in sampling. On the other hand, with ±10% error bounds, the standard 

deviation of the epistemic uncertainty in the failure theory is 5.8%. This is why element 

tests were more significant in reducing uncertainty. If, on the other hand, the failure 

theory was much more accurate, then element tests are expected to be less significant. 

For example, with ±2% error bounds, the magnitude of the epistemic uncertainty in 

failure theory is merely 1.2%. With such an accurate failure theory, it turns out that the 

number of coupon tests becomes more influential than the number of element tests 

It turned out that increasing the number of element tests is more important than 

increasing the number of coupon tests when we have the large epistemic uncertainty 

(±10%) in the failure theory. However, when the epistemic uncertainty is small (±2%), 

the number of coupon tests becomes more influential than the number of element tests. 
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In parallel to Fig. 2-9, Fig. 2-10 shows a comparison between the effect of nc and ne on 

the weight penalty when the error in the failure theory is small. It is clearly seen that the 

effect of the number of coupon tests is more influential than the number of element tests 

for decreasing the chance of having very conservative designs and reducing the 

variation of design. 

Compared to Tables 2-7 and 2-8, the increased accuracy of the failure theory 

reduces substantially the penalty associated with no element test. For 10 coupon tests, 

the weight penalty for no element test is reduced from 5.2% to 3.2% for unconservative 

error (Tables 2-7 and 2-9) and from 16.3% to 5.3% for conservative error (Tables 2-8 

and 2-10). Also, because the epistemic uncertainties associated with the failure theory 

are not comparable to that in the mean of coupon tests, the contributions of the number 

of coupon and element tests become comparable. Increasing element tests from 1 to 5 

for 10 coupon tests reduces the weight penalty from 3% to 2% (Table 2-9) and from 

4.9% to 2.9% (Table 2-10). In comparison, for one element test, increasing the number 

of coupon tests from 10 to 90 reduces the weight penalty from 3% and 4.9% to 1.2% 

and 3.3%, respectively  

For un-conservative failure theory with 1% error, shown in Table 2-9, PUDs 

increasingly converges to 5% through 1 to 5 element tests. For conservative failure 

theory with 1% error, Table 2-10, the behavior of PUD is also expected that PUDs 

increase as the number of element tests increases that the conservative prediction 

characteristics of failure theory is weaken as the number of element tests increases but 

the characteristics still remains with 5 element tests.  
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The above examples illustrate the effect of the number of tests to predict a design 

allowable using Bayesian inference. In the current design practice, the lowest element 

test result is used as a design allowable. A comparison between the two approaches is 

shown in the following section. 

A Comparison between Current Statistical Method and the Proposed Bayesian 
Method 

In the building-block process, the number of element tests is usually limited to 

three, due to the large number of structural elements to test [4,5]. In the current 

practice, analytical prediction of element strength based on failure theories is modified 

by applying the lowest ratio between the test results and the predicted failure stress. 

This process can be interpreted as applying an implicit knockdown factor to the average 

test failure stress to obtain a design allowable of element strength [4]. If the tests are 

repeated with different elements, the predicted failure stress will be changed as well as 

the implicit knockdown factor 

In this dissertation, we propose a way to estimate a design allowable by adding 

certain conservativeness on estimated mean element strength using Bayesian 

inference. Bayesian inference has a strong point to combine information from different 

sources [81]. In the proposed method, we combine confidence interval information from 

analytical prediction (prior) with data from element tests while the current practice relies 

on data from element tests. 

To compare the two approaches, the mean weight penalties are matched, by 

which we can compare the achieved safety for the same weight penalty in terms of 

PUD. For the current method, the lowest element strength of three is taken as the 
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conservative element strength so that the probability of being larger than the true mean 

is 12.5%. 

 
 ,0.125 Pr lowest e true  

 

(2-22) 

For the proposed method, since the conservative element strength is the 5th 

percentile of the mean element strength 0.05 , the probability can be calculated as 
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(2-23) 

Note that the constant k is used to match their mean weight penalties. As we do in the 

previous examples, the weights of penalty for both methods are calculated using MCS 

with 100,000 samples. 

 
 ,

,For current method 1 100 %
e true

i curr

lowest

w




 
   
   

(2-24) 

 
 ,

0.05

For theproposed method 1 100 %
e true

i i
w

k





 
   
   

(2-25) 

where i represent index of a sample and the subscript curr represents current method. 

Table 2-11 presents mean and 95th percentile of weight penalty for the proposed 

and current method. Both methods use three element tests, Ne=3. Since the proposed 

method combines the information from analytical prediction with data from coupon, the 

effect of the number of coupon tests is shown. 

Figure 2-11. shows the distributions of weight penalty for the proposed and current 

method, and Table 2-11 characterizes the distribution with PUD representing safety and 

95 percentile of weight penalty factor representing extreme cases for both methods. The 

proposed method shows better results in both measures. For PUD, the proposed 

method has at least 5% less PUD than current method; that is, the proposed method is 



www.manaraa.com

 

48 

safer than current method by at least by 5%. For 95th percentile of weight penalty, the 

proposed method is less at least 0.7% and at most 3%. For cases of 5% errors in 

prediction, the number of coupon test is very limited. 

The Accuracy of a Convolution Integral for Calculating a Conditional Distribution 

It has been shown that double-loop MCS can be used to calculate the distribution 

in Eqs. (2-5) and (2-10) as shown in Figs. 2-2 and 2-4. However, MCS has a 

computational challenge in the tail region (low-probability region) as well as sampling 

error. For example, a 10-4 level of probability can be hardly estimated with 10,000 

samples. Different from MCS, a convolution integral can calculate a nearly exact 

distribution without having sampling errors. In this section, the accuracy of the 

convolution integral is compared with that of MCS. 

In order to illustrate the advantage of the convolution integral, the probability of the 

product of two random variables, ˆ ˆ ˆZ X Y  , are used. It is assumed that the two 

independent random variables are defined as ˆ ~ (1.1,0.0096)X N  and ˆ ~ (0.9,1.1)Y U . For 

MCS, one million samples are used to evaluate the probability of Z values at 0.955 and 

0.975. Since MCS has sampling error, this process is repeated 1,000 times; the mean 

and coefficient of variation are listed in Table 2-12. For the convolution integral, the 

entire range is divided by 50 segments, and three-point Gauss quadrature in each 

segment is used in integrating Eq. (2-10) with be=0.1, 
, 1.1c test  , and , / 0.0096c test cn  . 

The results only differ by 0.2% when 400 segments are used. Different from MCS, there 

is no need for repetition because convolution integration does not have sampling error. 

When the probability is of the order of 10-4, MCS has about a 3.9% coefficient of 

variation (COV), while the convolution integral shows a very little calculation error. 
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When the probability is to the order of 10-7, the MCS with 1 million samples is not 

meaningful, as reflected in the COV value of 210%. However, the convolution integral is 

still accurate, and the value can be obtained by a one-time calculation. Note that the 

estimated error in the mean PF with 1000 repetitions can be calculated as 4.93×10-

7/10000.5 = 1.56×10-8. 

Effect of the Number of Coupon Tests on Weight Following FAA Regulations 

While from the standpoint of uncertainty reduction element tests may be more 

useful than coupon tests, there is substantial weight penalty for having a small number 

of coupon tests. This is due to the FAA regulations specifying the required 

conservativeness in failure stress. The regulations, (FAR 25.613) specify conservative 

material properties, called A-basis or B-basis that must be used as design allowables.  

In this section we illustrate the effect of the number of coupon tests on design 

weight, calculating the required sectional area of a simple tension bar using the B-basis. 

The B-basis value is a statistically based material property which satisfying a 95% lower 

confidence bound on the tenth percentile of a specified population of measurements. 

Obviously, when the number of coupon tests is small, the 95% confidence bounds are 

wider. Indeed, the regulations specify that the B-basis allowable is given as 

 , ,B basis c test B c testk      (2-26) 

where kB is given as a function of the number of coupon in Table 8.5.10 of the 

Composite Material Handbook [2]. 

We again use the parameters, ,c true = 1.0, ,c true =0.07 (COV 7%), ,e true =1.05, and 

,e true =0.0315 (COV 3%), to generate coupon test results and calculate a required area 

to sustain a unit force with B-basis allowable as shown in Eq. (2-27).  
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We calculate average required area as function of the number of tests with 1 million 

repetitions of tests results. 

Table 2-13 shows that the mean of calculated design area with 90 coupon tests is 

6.2% lower than the mean of calculated design area with 10 coupon tests. Another 

adverse aspect of a small number of coupon tests on design is variability of the design. 

As seen in Table 2-13, design based on 10 coupon tests has 5 times larger standard 

deviation than design with 90 tests. If we take the 99th percentile of the 1 million 

samples, as a worst case representative, we obtain 1.343, 1.173, and 1.150 for 10, 50, 

and 90 tests, respectively. 

Summary 

In this chapter, the effect of the number of coupon and element tests on reducing 

conservativeness and weight penalties due to the uncertainty in structural element 

strength was studied. Two sources of epistemic uncertainties were considered: (a) the 

sampling uncertainty in measuring material variability and (b) the uncertainty in the 

failure theory. A large number of coupons reduce the uncertainty in measuring material 

variability, while element tests reduce the uncertainty in the failure theory. These 

uncertainties were combined using the convolution integral, which is more accurate and 

robust than MCS. Then, Bayesian inference was used to update this uncertainty with 

element test results. Because test results can vary, a large number of simulations were 

used to obtain mean performance and distributions. 

For a typical case of ±10% uncertainty bounds on the failure theory, 5% actual 

error, 7% and 3% coefficient of variation in material strength and element strength, 
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element tests were found to be very important in reducing weight penalties from about 

15% with no tests, to about 2% with five element tests. The effect of the number of 

coupon tests was much smaller because sampling uncertainty was much smaller than 

the uncertainty in the failure theory. When the failure theory was much more accurate 

(±2% confidence bounds and 1% actual error), the effect of the number of coupons 

became comparable to that of element tests. The methodology developed would thus 

allow designers to estimate the weight benefits of tests and improvements in failure 

predictions. 
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Table 2-1.  Sources of uncertainty in estimating element strength with building-block test 
process. 

Test stage Objectives Uncertainty sources 

Coupon 
test 

Estimate nominal value and 
variability of material failure 
strength 
 

Variability in material strength and 
sampling error due to a finite number of 
coupons 

Element 
design 

Estimate nominal multi-axial 
failure strength based on a 
failure theory 

Incomplete knowledge of failure 
mechanism: error in failure theory 

Element 
test 

Reduce uncertainty in the multi-
axial strength 

Sampling error due to a finite number 
of elements 

 

Table 2-2.  True distributions of coupon and element tests 

Test Distribution Parameters 

Coupon test Normal ,c true = 1.0, COV 7%  

Element test Normal ,e true = 0.95, COV 3%  

 

Table 2-3.  Statistics for coupon and element tests 

No. of coupon 
tests 

Coupon test Element tests (order by sequence) 

10 ,c test = 0.972 , 
,c test = 0.091 

0.945, 0.955, 0.987, 0.953, 0.935 

,e test = 0.955 , 
,e test = 0.0193 

50 ,c test = 1.004 , 
,c test = 0.073 

0.896, 0.981, 0.939, 0.998, 0.957 

,e test = 0.954 , 
,e test = 0.039 

90 ,c test = 1.001 , 
,c test = 0.070 

0.917, 0.989, 0.954, 0.939, 0.948 

,e test = 0.949 , 
,e test = 0.026 

 

Table 2-4.  Error distributions of element tests 

Error  Distribution Bounds 

eb  Uniform 10%  

 ,lower upper

e e     Uniform [0,0.04]  
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Table 2-5.  Estimates of the conservative element strength and the resulting weight 
penalty (compared to infinite number of tests) from a single set of test results 

(
,e true =0.95: Unconservative 5% error in failure theory) 

 
 
 

Ne=0 Ne=1 Ne=3 Ne=5 

5th percentile  
Nc=10 

0.872 0.910 0.936 0.936 
Weight penalty 8.8% 4.3% 1.4% 1.4% 
5th percentile 

Nc=50 
0.911 0.893 0.912 0.929 

Weight penalty 4.1% 6.2% 4.0% 2.2% 
5th percentile 

Nc=90 
0.910 0.903 0.923 0.927 

Weight penalty 4.3% 5.1% 2.8% 2.3% 

 

Table 2-6.  Four scenarios associated with epistemic uncertainty in failure theory and 
corresponding example settings (COV of 7% in material strength is assumed) 

Magnitude of 
error in failure 
theory 

Failure theory 
True mean 
of element 
test 

Error bound 

Large epistemic 
uncertainty in 
failure theory 

Unconservative ,e true = 0.95 
eb = 10%  

(standard 
deviation of 5.8%) 

Conservative ,e true = 1.05
 

Small epistemic 
uncertainty in 
failure theory 

Unconservative ,e true = 0.99 
eb = 2%  

(standard 
deviation of 1.2%) 

Conservative ,e true = 1.01
 

 

Table 2-7.  Mean, 95th percentile of weight penalties and probability of unsafe design 

(PUD) (
,e true =0.95: Unconservative 5% error in failure theory) 

Measures  Ne=0 Ne=1 Ne=3 Ne=5 

Mean Nc=10 5.2% 3.1% 2.5% 2.1% 
Nc=50 4.5% 3.1% 2.5% 2.1% 
Nc=90 4.5% 3.1% 2.5% 2.1% 

95th perc. of weight 
penalty factor 

Nc=10 9.3% 7.1% 5.2% 4.3% 
Nc=50 6.2% 6.1% 5.0% 4.3% 
Nc=90 5.7% 5.9% 5.0% 4.3% 

Probability of unsafe 
design (PUD) 

Nc=10 2% 10% 8% 7% 
Nc=50 0% 9% 7% 6% 
Nc=90 0% 9% 7% 6% 
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Table 2-8.  Mean, 95th percentile of weight penalties and probability of unsafe design 

(PUD) (
,e true =1.05: Conservative 5% error in failure theory) 

Measures  Ne=0 Ne=1 Ne=3 Ne=5 

Mean Nc=10 16.3% 4.3% 2.7% 2.2% 
Nc=50 15.5% 4.2% 2.6% 2.1% 
Nc=90 15.4% 4.2% 2.6% 2.1% 

95th perc. of weight 
penalty factor 

Nc=10 20.8% 9.3% 5.8% 4.5% 
Nc=50 17.4% 9.5% 5.7% 4.5% 
Nc=90 16.8% 9.5% 5.7% 4.5% 

Probability of unsafe 
design (PUD) 

Nc=10 0%  5%  6%  6%  
Nc=50 0%  5%  7%  6%  
Nc=90 0%  5%  7%  6%  

 

Table 2-9.  Mean, 95th percentile of weight penalties and probability of unsafe design 

(PUD) (
,e true =0.99: Unconservative 1% error in failure theory) 

  Ne=0 Ne=1 Ne=3 Ne=5 

Mean Nc=10 3.2%  3.0%  2.4%  2.0%  
Nc=50 1.5%  1.5%  1.4%  1.3%  
Nc=90 1.3%  1.2%  1.2%  1.1%  

95th perc. of weight 
penalty factor 

Nc=10 7.4%  6.8%  5.4%  4.3%  
Nc=50 3.2%  3.1%  2.9%  2.7%  
Nc=90 2.5%  2.5%  2.4%  2.3%  

Probability of unsafe 
design (PUD) 

Nc=10 10%  9%  8%  7%  
Nc=50 7%  6%  7%  7%  
Nc=90 5%  5%  6%  6%  

 

Table 2-10.  Mean, 95th percentile of weight penalties and probability of unsafe design 

(PUD) (
,e true =1.01: Conservative 1% error in failure theory) 

  Ne=0 Ne=1 Ne=3 Ne=5 

Mean Nc=10 5.3%  4.9%  3.8%  2.9%  
Nc=50 3.6%  3.4%  3.0%  2.5%  
Nc=90 3.3%  3.2%  2.8%  2.5%  

95th perc. of weight 
penalty factor 

Nc=10 9.6%  8.9%  7.3%  5.8%  
Nc=50 5.3%  5.1%  4.6%  4.1%  
Nc=90 4.6%  4.4%  4.1%  3.7%  

Probability of unsafe 
design (PUD) 

Nc=10 2%  2%  2%  3%  
Nc=50 1%  1%  1%  2%  
Nc=90 0%  0%  1%  1%  
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Table 2-11.  Probability of unsafe design (PUD), 95th percentile of weight penalties and 
magnifier 

Case 
Proposed method Current 

method Nc=10 Nc=50 Nc=90 
 Probability of unsafe design (PUD) 
Unconservative 5% error 6.1% 6.4% 6.4% 12.5% 
Conservative 5% error 6.7% 7.3% 7.3% 12.5% 
Unconservative 1% error 5.8% 0.4% 0.0% 12.5% 
Conservative 1% error 7.8% 0.6% 0.2% 12.5% 

 
95th perc. of weight penalty factor 
(extreme design weight) 

Unconservative 5% error 5.4% 5.2% 5.1% 6.8% 
Conservative 5% error 5.7% 5.7% 5.7% 6.8% 
Unconservative 1% error 5.6% 4.2% 3.9% 6.8% 
Conservative 1% error 6.1% 4.3% 3.9% 6.8% 

 

Table 2-12.  Probability of Z at two different values 

Z value 0.955 0.975 

MCS Mean 2.34×10-7 6.77×10-4 
COV 210.7% 3.9% 

Convolution integral 2.40×10-7 6.78×10-4 

 

Table 2-13.  Statistics for the calculated design areas with different number of coupon 
tests (True mean and standard deviation of material strength are 1.0 and 
0.07, respectively). 

# of coupon 
tests 

Design area B-basis allowable 

Mean Std. Mean Std. 

10 1.194 0.064 0.840 0.044 
50 1.129 0.019 0.885 0.015 
90 1.120 0.013 0.892 0.011 
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Figure 2-1.  Building-block test process for aircraft structural components. 
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Figure 2-2.  Double-loop Monte Carlo simulation to obtain the PTD of failure strength. 
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Figure 2-3.  The distributions of element mean failure strength and its dependence on 

the number of coupons prior to the element tests. The error bounds are 10%, 

,c true =0.85, ,c true =0.068, and 3 ,d calck =1. 
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Figure 2-4.  Process of estimating element mean failure strength. 

 



www.manaraa.com

 

58 

0.7 0.8 0.9 1
0

1

2

3

4

5

6


e,Ptrue

P
D

F
 v

a
lu

e

 

 

nc=10

nc=50

 
Figure 2-5.  The distributions of element mean failure strength and its dependence on 

the number of coupons prior to the element tests. The error bounds are 10%, 

,c true =0.85, ,c true =0.068, and 3 ,d calck =1. 
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Figure 2-6.  Comparison of the uncertainty in mean element strength before the first 
element test and after. The distribution before corresponds to 50 coupon tests 
that happen to have the correct mean (1.0). The true strength is 0.95, and the 
updated distribution is given for an element test that has no error. 
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Figure 2-7.  Distributions of 5th percentiles with no element test and one element tests 

while the true mean element strength is 0.95. 
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Figure 2-8.  Distribution of weight penalty due to the variability in tests. 
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Figure 2-9.  Distributions of weight penalties for comparison between the number of 
coupon tests and the number of element tests. A) ne = 0,1,3,5 with nc = 50 
(μe,true= 0.99 and be=±10%), B) ne = 3 with nc = 10,50,90 (μe,true = 0.99 and 
be=±10%), C) ne = 0,1,3,5 with nc = 50 (μe,true = 1.01 and be=±10%), and D) ne 
= 3 with nc = 10,50,90 (μe,true = 1.05 and be=±10%). 
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Figure 2-10.  Distributions of weight penalties for comparison between the number of 
coupon tests and the number of element tests. A) ne = 0,1,3,5 with nc = 50 
(μe,true = 0.99 and be=±2%), B) ne = 3 with nc = 10,50,90 (μe,true = 0.99 and 
be=±2%), C) ne = 0,1,3,5 with nc = 50 (μe,true = 1.01 and be=±2%), and D) ne = 
3 with nc = 10,50,90 (μe,true = 1.05 and be=±2%). 
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Figure 2-11.  Distributions of weight penalties for comparison between the proposed 
method and current method (taking the lowest element strength among 

three). A) Unconservative 5% error (
,e true = 0.95 and eb = 10% ), B) 

Conservative 5% error (
,e true = 1.05 and eb = 10% ), C) Unconservative 1% 

error (
,e true = 0.99 and eb = 2% ), and D) Conservative 1% error (

,e true = 1.01 

and eb = 2% ).
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CHAPTER 3 
EFFECT OF TESTS ON STRUCTURAL SAFETY WITH CORRELATED MULTIPLE 

FAILURE MODES 

Motivation and Scope 

In complex system design, each structural element is required to ensure the 

required safety for a given load level to prevent failure of whole structure, which is 

possibly triggered by the failure of an element. Estimating the probability of failure (PF) 

of the structure for the required load level becomes important to ensure the safety. In 

this study, we consider multiple failure modes due to various sources of uncertainty, 

such as variability in manufacturing process. In such a case, it is possible that some of 

them are affected by the same source of uncertainty, and so they are often correlated. 

Considering the presence of correlated multiple failure modes is an important issue for 

ensuring the safety of structural elements.  

To estimate PF of a structural element with multiple failure modes, two things have 

to be properly considered. Firstly, the effects of error in numerical models and structural 

tests to reduce it have to be appropriately reflected on the PF estimation. The 

correlation brings two issues. Since errors in numerical models for predicting failures by 

different modes are correlated, the uncertainty model has to reflect the correlation 

between errors in failure predictions. Also the correlation among failure modes leads to 

correlated variability of limit state functions, which makes it difficult to estimate PF. 

To incorporate test results into numerical model, uncertainty in test process needs 

to be quantified and included. Tests usually have uncertainties in both input and output 

parameters. Thus the uncertainties in input parameters have to be propagated to 

uncertainty in outputs so that the effect of uncertainty in tests can be properly taken into 

account.  
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Advanced composite materials have become key ingredients in modern aircraft 

structures due to their superior strength to weight ratio, stiffness tailorability, fatigue and 

corrosion properties. Hence, the composite material has been widely used for aircraft 

structure designs. To ensure safety of composite structures, designers rely on building-

block testing, but the effect of tests has been rarely quantified. Here, we make an 

uncertainty model to show the effect of tests on safety of composite structures. In this 

study, uncertainty in geometric imperfection and correlated uncertainties in laminate 

material properties are incorporated in the uncertainty model, and two correlated failure 

modes, buckling and strength failure modes, are considered. Abaqus is used to predict 

buckling load and strength failure load using static nonlinear analysis with Riks method 

to catch snap-through instability. 

This chapter is composed of six sections. First section is to show how to model 

uncertainties to incorporate contribution of tests to reduce uncertainty on estimating PF, 

especially for a case of having correlated multiple failure modes. Second section is to 

show how to construct likelihood function with uncertainty in input parameters in test 

data. Third section is to present the way of calculating system PF with considering 

correlated failure modes. Fourth section has illustrative examples. In the illustrative 

examples, a simple beam model is used to demonstrate the presented uncertainty 

model and the effect of tests. And PF of a curved composite panel model is estimated 

with actual test results collected from one literature and the effect of a single test on 

uncertainty in PF estimation is shown. 
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Modeling Uncertainty  

Modeling Uncertainty in Numerical Model for Estimating PF 

Estimating PF starts with quantifying uncertainty in structural capacity, such as 

buckling load and strength failure load, which is triggered by input uncertainties, such as 

variability in material properties and manufacturing imperfection (alreatory uncertainty). 

Then conditional expectation of probability that capacity is less than required design 

load is calculated.  

If there is no error in measuring input uncertainties, error in the numerical model 

(epistemic uncertainty) is the only uncertainty source in PF estimate. By applying all 

possible errors in numerical model, PF distribution can be obtained, which models 

uncertainty in PF calculation due to the epistemic uncertainty. 

Figure 3-1A shows a PF calculation process for a given error in the numerical 

model. This is different from the conventional approach in which the error is also 

considered as a random variable in calculating PF. In this process, contribution of error 

in numerical model is separated from calculating PF so that the effect of the error can 

be clearly seen. There are three variabilities: variabilities in geometric dimension  inpf d , 

material property  inpf m  and required load  Pf P . We then calculate the distribution of 

the buckling load  |calc calcf e
 
which is expressed as a conditional probability density 

function (PDF) of buckling load for given calculation error calce . Finally PF is calculated 

using  |calc calcf e
 
and  Pf P . The PF is a conditional expectation of probability that the 

required load is less than the buckling load.  

Once the PF is estimated for a given value of error, the distribution of error is used 

to estimate the distribution of PF. Figure 3-1B shows the process of calculating PF 
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distribution. The PF calculation process is a function of the error as shown in Figure 3-

1A so that the PF distribution can be obtained from transformation of error distribution 

with the PF calculation function. Therefore, the uniqueness of the proposed approach is 

that the PF is estimated as a distribution, not a value as in the conventional approach. 

Once the distribution of PF is estimated, structural tests are used to narrow the 

distribution in PF. Since the uncertainty in PF is caused by error distribution, structural 

tests reduce the error distribution, which is used to reduce the distribution of PF. Figure 

3-2 shows the effect of reducing uncertainty in the error distribution  ,e calc calcf e with tests 

on the uncertainty in PF estimation. The distributions with dotted line and solid line 

represent before and after tests. The effect of the tests on PF estimation can be seen 

through the narrowed PF distribution and can be quantified by measuring the change of 

standard deviations.  

Modeling Uncertainty in Estimating Structural Capacities for Multiple Failure 
Modes 

In this section, we assume a scenario of estimating PF of a structural element 

which has two correlated failure modes, buckling and strength failures. Modeling 

uncertainties in the numerical models for predicting buckling load and strength failure 

load is described. 

Buckling load is estimated for given dimension d and material property m. The 

relationship between the true buckling load and calculated value for buckling load are 

expressed as 

 
 ,1true calc true calcC e   

 
(3-1) 
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where 
trueC  is the true buckling load for given dimension and material property d and m, 

calc is the calculated buckling load and the 
,calc truee is unknown true error in buckling load 

capacity calculation.  

To estimate the strength failure load, we are in need of using failure theory to 

determine structural failure. For example, we can determine failure load of a tension 

problem with the maximum strain criterion by determining the load which reaches axial 

strain (structural response) to the ultimate strain. In this example, we have two 

uncertainty sources in estimating strength failure: uncertainty in predicting structural 

response and uncertainty in the failure theory as shown in the previous chapter. The 

former is associated with the error in the numerical model. 

If there is no error in numerical model, we only have the error in the failure theory 

as  

 
 1s f

true true trueC e S 
 

(3-2) 

where s

trueC  is the true failure strength for given dimension d and material property m, 

trueS  is the failure load which is determine by failure criterion, and f

truee  is the true error in 

estimating strength failure load using the failure theory. The numerical model, however, 

also has error to estimate structural response with respect to the load (e.g. error in a 

load-strain curve). If we have no error in our numerical model to evaluate the relation 

between load and structural response, we can express the true load trueS  as a function of 

the structural response. Using strain as the structural response, the load-strain relation 

is defined as  

  s

true true trueS f 
 

(3-3) 
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Equation (3-3) generally has a form of load-strain curve, and the error in the curve has 

to be considered. In this study, we propose a simple method to parameterize errors in 

the curve. 

Parameterization of a Load-Strain Curve for Modeling Uncertainty in Strength 
Failure Load Prediction 

The strength failure load is estimated at the maximum strain point of the load-

strain curve. Figure 3-3 is a conceptual figure to show a discrepancy between the 

calculated load-strain curve and the true curve. It is assumed that the snap through 

behavior is observed because of the presence of buckling.  

In this study, we propose parameterization of the curve with the buckling load and 

buckling strain. Reducing error in the curve can be achieved by reducing error in the 

parameters. However, the errors for both buckling load and buckling strain are coupled 

in the numerical model. We propose a simple method for decoupling the parameters by 

normalizing the true curve in terms of parameters and their errors. It is assumed that 

normalized true curve and normalized curve from numerical model follow the same 

functional relationship. The normalized curve can be expressed as 

 
   , ,1 1

P

calc calc true calc calc true

P
f

e e
 



 

 
 
  
   

(3-4) 

where ,calc truee and ,calc truee are true error in buckling load prediction and the true error in 

calculation of buckling, respectively. Pf  is the normalized curve from numerical model. 

Equation (3-4) provides a relationship for load P and strain ε in terms of parameter 

errors. When we know the true errors, ,calc truee and ,calc truee , the true strength failure capacity 

can be determined with the ultimate strain as 
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e
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 
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   

(3-5) 

By replacing 
trueS in the Eq. (3-2) with that of Eq. (3-5), uncertainties in the strength 

failure is modeled with the parameterized load-strain curve. 

Incorporating the Effect of Tests in Numerical Model using Bayesian Inference 

From the previous section, it is shown that errors in predicting buckling load and 

strength failure load are formulated with errors. However, since the true errors are 

unknown, we have to estimate the errors. It is assumed that the estimated errors are 

defined as uniform distributions as follows 

 

 
 

 

 
 

 

,

,

1
[ , ]

1
[ , ]

init

e calc calc e e

e e

init

e calc calc e e

e e

f e I e l u
u l

f e I e l u
u l

   

  

   

  

 


 


 

(3-6) 

where  [ , ]I x l u  is an indicator function that gives 1 when x belongs to the range [l,u] 

and 0 for otherwise. In the above equation, u and l represent the upper and lower 

bounds, respectively. The superscript λ and ε represent buckling load and buckling 

strain, respectively.  

The initial error distributions (prior) in Eq. (3.6) are reduced based on the test 

observations. Bayesian inference is used with the prior distribution in Eq. (3-6) and the 

likelihood functions from tests. Since there is no information for the relationship between 

the two errors, the prior distribution is modeled as independent uniform distributions. 

The likelihood function reflects uncertainty in test process and is modeled with copulas 

to reflect correlations between two errors. Appendix B explains the detailed information 

of copulas. Detailed derivation for the likelihood function and relevant issues are 
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described in the next section. Finally the updated joint distribution of errors (posterior 

distribution) is expressed as follows 

 

 
   

   

, ,

, ,

, ,
,

, ,
e e

e e

init

e calc calc e calc calcupd

e calc calc u u
init

e calc calc e calc calc calc calc
l l

f e e l e e
f e e

f e e l e e de de
 

 

   

  

     

 



 

 

(3-7) 

Note that the errors in calculation for the buckling load and buckling strain are correlated 

even the correlation is not explicitly expressed in Eq. (3-7).  

Constructing Likelihood Function with Uncertainty in Input Parameters 

Likelihood Functions due to Uncertainty in Input Parameters 

When there are no errors in test, we can obtain a true observation. However, this 

is not the case. In structural tests, there are many sources of errors, such as 

measurement errors and errors in boundary conditions and applied loads. To compare 

test observation with predictions from numerical model, input parameters of the test and 

that of the predictions have to be the same. However in case of a thin composite panel, 

measurement errors in output parameters, such as surface strain, buckling load and 

buckling strain, are very small, less than 0.1%, whereas measurement errors in input 

parameters, such as material properties and thickness, are approximately 3 to 4% [14].  

That implies that a comparison between a predicted buckling load and a test 

observation does not give a correct error in calculation. For example, predicted buckling 

load is based on a numerical model and measured input parameters. However, the true 

input parameters, which draw a test observation, are different from the measured input 

parameters while numerical test uses measured input parameters to identify the 

calculation error by comparing predicted buckling load and observed buckling load from 

test.  
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Since the true input parameters are not obtainable, we need obtain a likelihood 

function of the true prediction for the measured input parameters. To establish a proper 

likelihood function with the measurement errors in input parameters, the effect of input 

parameter uncertainty on output parameter uncertainty has to be quantified.  

Here we have a simple example that uncertainty in input parameters of test data 

causes problem to obtain error in output from a numerical model. If we predict an output 

using a prediction function 
predg  and measured input

measx , the true prediction error 
prede  

can be obtained from 

       1true meas pred pred measg x e g x   (3-8) 

where 
trueg is a true function which provides test results for given input and predg is a 

function with error to predict output. Note that  true measg x is not the test observation 

 true trueg x .  As mentioned earlier, the measurement error in output is negligibly small, the 

measured output parameter for the true input parameters is equal to  true trueg x  Figure 3-

4A shows an ideal case that there is no measurement error. Fig. 3-4B shows the case 

that measurement error in output parameters are ignorable but that in input parameters 

are large that the situation this section deals with. Figure 3-4C shows that a likelihood 

function for  true measg x  and the likelihood function can be obtained through quantifying the 

effect of uncertainty in input parameter on the output parameter by applying all possible 

true input parameters around measured input parameters. 

Effect of Uncertainty in Input Parameter on the Output Parameter 

In this section, the process to obtain likelihood function of buckling load and 

surface strain for measured input parameters is explained.. Likelihood function is 
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obtained using a numerical model. It is assumed that the effect of errors in boundary 

condition and measured strain and buckling load are negligibly small. 

If we can obtain the true buckling load and strain for measured dimension and 

material property, we can quantify the effect of the measurement errors in the input 

parameters on output parameters by calculating distributions in strain and buckling load 

according to the measurement errors as 

 

 

 

ˆˆ ˆ,

ˆˆ ˆ,

test true meas meas

test true meas meas

g d m

g d m












 

(3-9) 

where variables with a hat are random variables and the g represents the true function. 

The random variables on the left-hand side can be modeled as likelihood functions. 

However since the true function is unknown, the numerical models 
calcg  and 

calcg have to 

be alternatively used as in Eq. (3-10) with errors in the numerical model. 

 

    

    

ˆˆ ˆ1 , ,

ˆˆ ˆ1 , ,

test calc meas meas calc meas meas

test calc meas meas calc meas meas

e d m g d m

e d m g d m

 

 





 

 
 

(3-10) 

The true errors, 
calce  and 

calce , in calculations vary for different dimensions and 

material properties in reality. It is assumed that the variation of error due to change of 

input parameters is negligibly small because variation in dimensions and material 

properties are 2% to 3%. Since the errors are no longer functions of input parameters, 

the error function is replaced with constants. Equation (3-10) can then be approximated 

as 

 

   

   

ˆˆ ˆ1 ,

ˆˆ ˆ1 ,

test calc calc meas meas

test calc calc meas meas

e g d m

e g d m

 

 





 

 
 

(3-11) 

where 

calce  are 

calce  the constant errors. 
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Since measurement errors in output parameters are small while that in input 

parameters are large, test errors are defined as discrepancy between measured outputs 

that have true input parameters that are different from measured input parameters and 

true outputs corresponding to measured inputs, which we need to calculate the errors in 

calculation, as  

 

     

     

, 1 ,

, 1 ,

true meas meas test true true true

true meas meas test true true true

g d m e g d m

g d m e g d m

  

  

 

 

 

(3-12) 

By replacing the true functions with numerical models with errors, and again, Eq. 

(3-12) is reformulated as 

 

        

        

1 , 1 1 ,

1 , 1 1 ,

calc calc meas meas test calc calc true true

calc calc meas meas test calc calc true true

e g d m e e g d m

e g d m e e g d m

    

    

   

   

 

(3-13) 

Since the errors are constants, the errors in the both sides are compensated each 

other. However since the true dimensions and material properties are unknown, 

possible true input parameters, distributions of input parameters for the true parameters 

are substitute instead of the true input parameters. Finally the errors in measured 

outputs for the true outputs for the measured input parameters are calculated as 

 

 

 
 

 

,
ˆ 1

ˆ ˆ,

,
ˆ 1

ˆ ˆ,

calc true true

test

calc meas meas

calc true true

test

calc meas meas

g d m
e

g d m

g d m
e

g d m













 

 

 

(3-14) 

Based on the test errors, we can estimate the true outputs for the measured input 

parameters from measured outputs. The calculation errors are estimated based on the 

test errors in next section. 
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Calculating Likelihood Functions for Errors in Numerical Model 

The likelihood function for errors in numerical model is defined as a conditional 

PDF for measured test observations. To make a connection between the errors in 

numerical model and the errors in test, the LHS of Eq. (3-12) is rewritten using 

numerical model as 

 

       

       

1 , 1 ,

1 , 1 ,

calc calc meas meas test true true true

calc calc meas meas test true true true

e g d m e g d m

e g d m e g d m

   

   

  

  
 

(3-15) 

From the assumption of very small measurement error in outputs,  ,true true trueg d m and 

 ,true true trueg d m can be replaced with 
meas and

meas . 

 

     

     

1 , 1

1 , 1

calc calc meas meas test meas

calc calc meas meas test meas

e g d m e

e g d m e

  

  





  

  
 

(3-16) 

By substituting Eq. (3-14) (the estimated test errors) into Eq. (3-16), the errors in 

numerical model are estimated as 

 

 

 

ˆ 1
ˆ ˆ,

ˆ 1
ˆ ˆ,

meas

calc

calc meas meas

meas

calc

calc meas meas

e
g d m

e
g d m













 

   

(3-17) 

Note that since the random variables ˆcalce and ˆcalce are correlated, the likelihood function 

 , ,e calc calcl e e 

 can be modeled as a copula that defines statistical correlation between the 

random variable in Eq. (3-17), ˆ
calce and ˆ

calce .  

Examples for Likelihood Functions  

Likelihood function can be interpreted as probability density function of true errors 

for given errors in numerical model. Here two likelihood functions are shown after a test 

using the simple beam example. In Figure 3-5, the plots have two symbols, true errors 
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(red circle) and calculated errors (green triangle) based on measured output parameters 

in buckling load and strain calculations, and a likelihood function (blue scattered plot).  

Figure 3-5 shows that an illustration of a scattered plot of the likelihood with 1000 

randomly generated samples and true errors and calculated errors. The horizontal axis 

is error in buckling load calculation and the vertical axis is error in strain calculation. 

Distance between the two symbols represents the error in measuring input parameters. 

Difference between two plots represents variability in tests. Also it is shown that the 

errors in numerical models are correlated. 

Estimating Probability of Failure with Multiple Failure Modes 

In the previous sections, we model the uncertainty in numerical models. Also a 

likelihood function is derived to reflect contribution of tests to reducing uncertainty in the 

PF estimation. To estimate PF, variability in structural capacities has to be calculated. 

For multiple failure mode cases, statistical correlation in the variability of structural 

capacities has to be considered. MCS is a very general method and has no limitation to 

calculate PF. However, MCS requires high computational resources, especially for 

small PF, such as reliability index of β=4 or 5.  

Here, we propose a strategy to calculate PF using MCS with less computational 

burden than the traditional MCS. Correlation among multiple failure modes is 

considered by decomposing failure modes with a condition. Computational efficiency is 

increased by decreasing the number of parameters that have to be estimated.  

Conditional Failure Mode Decomposition 

PF of a structural element with a compressive load with two failure modes is 

defined as 
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   ˆ ˆ ˆPr min , s

calc calcPF C C P 

 

(3-18) 

In this study, there are two critical failure modes. The critical failure modes are 

determined by the one with smaller capacity. Based on the condition of the critical 

failure mode, PF equation can be re-written as 

 
     ˆ ˆ ˆ ˆ ˆ ˆˆ ˆPr | P Pr | Ps s s

Ptrue Ptrue Ptrue b Ptrue Ptrue Ptrue sPF C C C P C C C P       
 

(3-19) 

where Pb is probability that buckling failure mode becomes critical, and Ps is probability 

of the other case. Because  ˆ ˆ ˆ ˆ| s

Ptrue Ptrue PtrueC C C P     and  ˆ ˆ ˆ ˆ|s s

Ptrue Ptrue PtrueC C C P  are two 

disjointed events, these two random variables can be considered as independent. 

Hence Eq. (3-18) can be simply reformulated to Eq. (3-19) as a sum of two probabilities 

which can be independently determined. 

We use MCS for generating capacity samples of buckling load and strength failure 

load with uncertainty in dimensions and material properties. Then, we categorize the 

generated samples into two groups: one group of samples which satisfies ˆ ˆ s

Ptrue PtrueC C   

and the other group of samples, and fit a CDF for each group. K-S goodness of fit test is 

used for fitting each group of samples. The fitted CDFs are approximated distribution of 

these two conditional random variables. Table 3-1 shows detailed process to calculate 

PF using this presented method.  

Illustrative Examples 

In this section, two examples, a simple beam model and a composite panel with a 

hole model, are shown. For the simple beam example, it is assumed that true variability 

in tests, true uncertainty in measured data, true errors in numerical model and true PF 

are assumed to be given for the purpose of generating samples and validating the 
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model. Process of estimating PF is repeatedly simulated with the uncertainty model to 

show the effect of variability in tests and to validate the uncertainty model. Tests are 

randomly generated for each simulation using the true variability. In this simulation, PF 

estimations based on the randomly generated tests vary and the estimated PF can be 

compared to the true PF. Average value of PF estimations is used for the expected PF. 

Also the effect of correlation is demonstrated. 

For the second example, PF of a composite panel with a hole is estimated with 

test data collected from a literature based on actual structural tests. Correlated 

uncertainty of laminate material properties and uncertainty in geometric imperfection are 

taken into account. 

Example 1: A Simply Supported Beam 

For the simply supported beam in Figure 3-6, there are two failure modes, buckling 

and strength failure modes, and it is assumed that a single element test is available. 

Two equations for buckling load and strength failure load are used to make simulation 

environment: true equations and equations with error. The true equation gives the true 

buckling load and strain, but errors are deliberately put into the equations with error to 

reflect numerical model errors. To simulate structural tests, test data is generated with 

the true equations, adding randomly generated material properties and specimen 

geometry. The measured material properties, geometries and test results, buckling load 

and strain at the buckling point, have measurement errors. Then, we estimate PF using 

the equations with error, the simulated test results and measured material properties 

and geometries. Since we know the true equations and true errors in the simulation, the 

estimated PF will be verified against the true PF. To see the effects of test variability, 
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the simulation is repeated 1,000 times and collect the statistical characteristics of the 

presented uncertainty model to estimate PF. 

Dimensions and boundary conditions of the beam model are shown in Figure 3-6.  

Couple C and axial forces P with roller boundary conditions are imposed on the two 

ends.  

The couple C and the axial load P have variability. Hence PF of the structure is a 

function of the axial force P and the couple C, equations with error for calculated 

buckling load calcP  and strength failure load s

calcP and corresponding true values trueP  and 

trueP  are expressed in Table 3-2. 

To simulation PF estimation process, Table 3-1 is used. Two different loading 

conditions, with and without including the couple C are considered. It will be shown that 

the loading condition affects correlation between the two failure modes. The correlation 

brings dominant failure mode switching as the load level changes and possibly bring 

large error in PF calculation when one failure mode is neglected.  

Beam with an Axial Load  

Table 3-3 shows uncertainty sources for material properties and dimensions of the 

beam. The uncertainties in manufacturing process are variabilities in input parameters 

and errors in measuring input and outputs during test data. It is assumed that test is well 

controlled, such that the standard deviations of test variabilities are 1/5 of the 

manufacturing variabilities. 

Without a couple C, the PF is estimated in terms of the magnitude of nominal P. 

For N, M and Q in Table 3-1, the number of function evaluations to obtain samples for 

capacities is N=200. After test, M=100 function evaluations are needed to establishing 
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likelihood function. Finally, Q=100×N capacity samples are calculated and separated 

into two cases,  ˆ ˆ ˆ| s

Ptrue Ptrue PtrueC C C    and  ˆ ˆ ˆ|s s

Ptrue Ptrue PtrueC C C . The separated samples are 

fitted to two CDFs. R=10 Millions samples are generated from the fitted CDFs and a 

CDF for load P to calculate PF. Error bounds for buckling load, strain and failure theory 

are given in Table 3-4. 

Since we have the uncertainties due to MCS and test variability, the PF estimation 

process is repeated 1,000 times. Statistics are compared to the true PF in Table 3-5. 

From Table 3-5, we can see the effects of a single test. When P=19 MN, we 

expect PF of 2.61×10-4 before test, but expected PF becomes 1.18×10-4 after using test 

result for reducing the error in failure prediction. The effects of test is significant in terms 

of design weight because the error in PF calculation has to be compensated by 

additional design weight. The standard deviation of PF without test represents error in 

MCS. We can observe that the standard deviation with test becomes larger than the 

standard deviation without test. This happened because the additional uncertainty 

comes from test variability. 

Beam with a Couple  

Next, we consider the case when both the axial force and the couple are applied to 

the beam. Different from the previous case, the dominant failure mode switches due to 

the existence of a couple. In order to illustrate this switch, the nominal values of h = 0.08 

m and C=105 kN-m are used. All other parameters are the same as in Tables 3-3 and 

3-4. The PF is estimated in terms of the magnitude of nominal P and the nominal value 

of C which is fixed. The number of function evaluations is N=200. For after test case, 

M=100 is used. Q=100×N and R=10 Million. Same error bounds with the previous 
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example are used. PF estimation process is repeated 1,000 times. Statistics are 

compared to the true PF in Table 3-6. 

A notable observation from this example is the observation that dominant failure 

mode is switched as axial load increases. For example, the strength failure mode is 

dominant when nominal P is 2.1MN but buckling failure mode is dominant when nominal 

P is 2.3MN. With a small change in axial load, dominant failure mode is changed. In 

other words, when design requirement for axial load is 2.1MN, ignoring the effect of 

strength failure mode is not influential for system PF calculation but strength failure 

mode is no longer ignorable when the design requirement for axial load is changed to 

2.3MN. 

Example 2: A Composite Panel with a Hole 

In this section, the PF of curved composite panel is estimated with the proposed 

method. Uncertainties that reflect features of composite materials have to be taken into 

account. Correlation between material properties due to the fiber volume fraction is the 

one that has to be considered in the uncertainty model. Ignoring the correlation of the 

material properties may induces a large error in predicting PF [16]. Geometric 

imperfection is another major source of uncertainty for composite structures. The effect 

of the imperfection for the curved panel example is shown in a later section. Hilburger 

and Starnes [17] investigated the effects of imperfections on the non-linear response 

and buckling loads of un-stiffened thin-walled compression-loaded graphite-epoxy 

cylindrical shells. They categorized two imperfection types as traditional imperfection 

and non-traditional imperfection. Here, the traditional Imperfection is considered as 

variability in geometry.  
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Comparison of Experimental and Analytical Results 

The composite panel was fabricated from commercially available unidirectional 

Thornel 300 graphite fiber tapes pre-impregnated with 450K cure Narmco 5208 

thermosetting epoxy resin fixture [15]. 

The geometry of the test specimen, loading and boundary conditions are 

schematically shown in Figure 3-7. The appropriate boundary conditions for the 

cylindrical panel are (i) fully clamped on the bottom edge, (ii) clamped except for axial 

motion on the top edge (potted end), and (iii) simply-supported on the vertical edges 

(knife-edge restraints). The test consists of statically imposing a uniform end-shortening, 

δ, until the specimen reaches buckling point. Electrical strain gages were used to 

monitor surface strains near the hole in the axial direction. A single test was performed 

and the buckling failure occurred. 

In this study, we assume that we have two potential modes, buckling failure and 

strength failure. Also it is assumed that the strength failure will be occurred by a failure 

of a single ply instead of a progressive damage model. 

We use nonlinear finite element analysis using Abaqus to predict strength failure 

and buckling failure as for anticipated severe deflection around the hole. The Riks 

method is used to capture the snap-through behavior. The composite panel in Figure 3-

7A is modeled with 9 node shell elements (S9R5 element in Abaqus). The panel section 

is defined as a composite general section with the stacking sequence and the ply 

thickness as shown in Table 3-7. After the analysis, the load-displacement curve is used 

to determine buckling point. Load-ply strain curves are analyzed to determine strength 

failure load of a ply. 
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Figure 3-8 shows comparisons between predicted load-displacement curve and 

load-surface strain curve from simulation and an experiment. The curves are plotted up 

to buckling point. The surface strain is measured from two strain gages on the top and 

bottom surfaces of the panel near the hole boundary. Table 3-8 has measured buckling 

load and surface strain at the buckling point from the test. 

Geometric Imperfection  

In this composite laminate panel, buckling load is very sensitive to the geometric 

imperfection, but the test specimen’s imperfection data is not available. We used the 

imperfection that provides the best prediction as the actual imperfection of the 

specimen. Figure 3-9 shows the effect of the imperfection with various perturbation 

magnitudes. It shows that the effects of imperfection on buckling load and nominal 

strain are substantial. Based on numerical tests, it is concluded that -10% to 10% of 

thickness perturbations are reasonable for the geometric imperfection range of the 

panel. Eigenvectors of modes 1 to 4 are multiplied with the thickness perturbations and 

added on nodal coordinates. There are two perturbation directions, positive and 

negative to the normal direction of the curved surface. The eigenvectors are obtained 

from the linear buckling analysis. Simulation result indicates that -10% thickness 

perturbation with mode 3 eigenvector provides the best predictions for buckling load and 

surface strain. Hence we assume that the specimen's actual imperfection is 

approximately mode 3 eigenvector shaped with the thickness perturbation of -10%. 

Uncertainty Modeling of Curved Composite Panel  

In this section, variabilities in buckling load and strength failure load, capacities of 

the curved composite panel, are estimated using ABAQUS. Table 3-9 shows 

variabilities in material properties and geometries. In Table 3-9, ply material properties, 
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E1, E2, G12 and ν12, are modeled as correlated random variables using copula. It is 

assumed that the fiber volume fraction is the dominant factor to make the correlation. 

Using the relationship between the elastic constants in terms of volume fraction from 

mixture rule, the correlation between material properties are calculated [16]. We 

assume that the material properties in Table 3-7 are the nominal values and the 

coefficient of variance for the nominal values are shown in Table 3-9. Covariance matrix 

that defines the correlation between material properties is calculated based on the 

coefficient of variations (See detailed information in Ref. [16]). It is assumed that the 

ultimate strains are independent each other. Variability in thickness and imperfection 

are also provided with Table 3-9. It is assumed that all the plies have the same 

variability in thickness. For the variability in imperfection, we randomly select an 

eigenvector and multiply the perturbation factor which is generated from the uniform 

distribution. 

Variabilities of capacities are estimated using the uncertainty sources and 

ABAQUS model with MCS. Strength failure is estimated using load-strain curve and the 

maximum strain criterion. Strength failure beyond the buckling point is estimated using 

post buckling analysis. 200 samples are generated using ABAQUS. As it is assumed 

that there are errors in measurements of dimensions and material properties of the test 

specimen, the errors in test measurements are considered to estimate PF. 

Table 3-10 shows the uncertainty in the test measurements and assumed values. 

Note that the effect of error in boundary condition is ignored since the effect of error in 

boundary conditions is very limited for this curved panel. 
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From the test measurements and error in measurements, the errors in 

measurements for buckling load and strain are obtained using Eq. (3-14). 100 samples 

are generated using ABAUQUS with the uncertainty sources in structural test. Best 

marginal distributions are fitted using K-S goodness of fit test, and Kendal’s tau rank 

correlation coefficient is calculated. The best fit distributions for the test errors are 

normal distributions. 

Correlation between the test errors is modeled using Frank copula and Kendal’s 

tau. The parameters of the fitted distributions and Kendal’s tau are shown in Table 3-11.  

Using Eq. (3-17), a likelihood function for error in numerical model, ˆ
calce and ˆ

calce is 

obtained. Table 3-12 shows the type of best marginal CDFs and statistics of the errors 

in numerical model are shown. Correlation between two errors is also modeled with 

Frank copula and Kendal’s tau. Error bounds in Table 3-4 are used for establishing prior 

distribution. 

Estimating PF Based on a Single Test 

PFs and their corresponding reliability indices of the composite panel are 

estimated in terms of different load levels. The updated distribution of the calculation 

errors is used to estimate PF with a test, and the prior is used for PF without test.  

With the test, conservativeness in the PF estimate can be significantly reduced as 

shown in Table 3-13. In this study, the effect of errors in numerical model is considered 

to estimate PF. The change in PF after test represents uncertainty reduction in errors of 

numerical model. Also there is an observation that PF is increased exponentially 

proportional to the load. 
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Summary 

In this chapter, an uncertainty model to incorporate the effect of tests on reducing 

uncertainty in estimating PF with multiple failure modes is proposed. In the model, the 

errors in numerical model are considered separately for estimating PF to show the 

effect of errors on estimating PF, and correlation between the errors is considered. Also 

a scheme of reducing uncertainty in predicting multiple failure modes with a single test 

is taken into account in the model. Statistical decomposition technique for correlated 

failure modes is also proposed to estimate PF without breaking their correlation. The 

proposed method is applied to a curved composite panel with a hole. Two correlated 

failure modes, buckling failure and strength failure, are considered. Typical uncertainties 

with composite materials, correlated variability in material properties and geometric 

imperfection, are also taken into account and considered to estimate PF of the panel. 

The proposed method for estimating PF is demonstrated with a beam example. In 

this example, the effect of uncertainty in numerical error is quantified. The numerical 

example shows that performing a single test can significantly reduce the uncertainty in 

numerical model. For the curved composite panel, ABAQUS is used for non-linear 

analysis to predict buckling and strength failures. PF of the curved panel according to 

the load level is estimated with the proposed method and presented. 
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Table 3-1.  Probability of failure calculation process. 

1. Generating N random sets of input parameters, dimension d and material 
property m 

2. Calculating N capacities with respect to the generated N sets of d and m using 
an analysis code (If test is performed go to step 3, otherwise go to step 6) 

3. Generating M sample sets of ˆ
measd  and ˆ

measm  as for uncertainty in input parameters 

4. Calculating M sample sets of ˆ
calce and ˆ

calce using test results which presented in ref 

[15] and  ,
ˆ ˆ,calc meas measf d m and  ,

ˆ ˆ,s calc meas measf d m with respect to the generated ˆ
measd  and 

ˆ
measm using the analysis code 

5. Fitting the M sample sets of ˆ
calce and ˆ

calce  using copula and marginal PDFs.  

6. Generating M errors using error bounds of buckling load and strain calculations 
7. Generating Q errors in buckling load and strain using the fitted copula model 
8. Combining the N sets from the step 2 and Q samples from step 6 and generate N 

sets of structural capacity samples 
9. Categorizing those generated capacity samples from step 8 into two failure cases 

of buckling failure and strength failure and fit those samples to two CDFs (K-S 
goodness of fit test is used for fitting the samples) 

10. Generating a large number of R samples from the two CDFs and R samples from 
random design load distribution and calculate PF 

11. Repeating the step 10 by N times to obtain PF distribution 

 

Table 3-2.  Equations with error and true equation for the simple beam model. 

 Buckling load Strength failure load 

True 
equation 

2 2

2 4

 
 calc

EI C
P

EIl
 0.5

 





 
   

 

calc u

s

calc
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2 2

2
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  
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Table 3-3.  Nominal values and variabilities from uncertainty sources. 

 Uncertainty 
source 

Nominal 
value 

Variability Distribution 

Material 
properties 

Manufacturing 
process 

E: 200 GPa 
εu: 0.0025 

CV=3% for E 

CV=1% for εu 
Normal 

Measurement 
error 

E: 0% 
εu: 0% 

Std. of 1% for E 
No error for εu 

Normal 

Dimensions Manufacturing 
process 

b: 0.3 m 
h: 0.165 m 

±1% for b and h Uniform 

Measurement 
Error 

b: 0% 
h: 0% 

Std. of 0.5% for 
b and h 

Normal 

Axial force Operating 
condition 

TBD CV=3% for P Normal 

Moment Operating 
condition 

TBD CV=1% for C Normal 

 

Table 3-4.  Error bounds for errors in numerical model. 

Error types Error bounds 

Error in buckling load 
calculation ,calc Ptruee  [-0.05,0.05] 

Error in strain calculation ,calc Ptruee  [-0.08,0.08]  

Error in failure theory f

Ptruee  [-0.05,0.05] 

 

Table 3-5.  PF estimations with 1000 repetitions without couple. 

 Load (P) 19 MN 19.5 MN 20 MN 

w/ test 
(N=200 
M=100) 

Mean PF 1.18×10-4 5.91×10-4 2.42×10-3 
Std. PF 5.85×10-5 2.27×10-4 7.34×10-4 
COV 0.5 0.38 0.3 

w/o test 
(N=200) 

Mean PF 2.61×10-4 1.01×10-3 3.22×10-3 
Std. PF 5.24×10-5 1.73×10-4 4.65×10-4 
COV 0.2 0.17 0.14 

True PF (system) 4.68×10-5 2.96×10-4 1.42×10-3 
True PF (buckling) 4.32×10-5  2.68×10-4  1.30×10-3  
True PF (strength) 1.86×10-5  1.35×10-4  0.7×10-4  
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Table 3-6.  PF estimations with 1000 repetitions with couple. 

 Load (P) 2.1 MN 2.2 MN 2.3 MN 

Couple (C) 105 kN-m (fixed) 

w/ test 
(N=200 
M=100) 

Mean PF 1.72×10-4 5.72×10-4 3.24×10-3 
Std. PF 1.44×10-4 3.97×10-4 1.62×10-3 
COV 0.84 0.69 0.5 

w/o test 
(N=200) 

Mean PF 1.97×10-3 3.17×10-3 6.00×10-3 
Std. PF 3.81×10-4 5.84×10-4 1.01×10-3 
COV 0.19 0.18 0.17 

True PF (system) 8.8×10-5 3.63×10-4 2.54×10-3 
True PF (buckling) 4.8×10-6  1.45×10-4  2.19×10-3  
True PF (strength) 8.6×10-5  2.51×10-4  6.0×10-4  

 

Table 3-7.  Ply material properties / Ply section properties. 

Material property  

E1 135 GPa (19600 ksi) 
E2 13.0 GPa (1890 ksi) 
G12, G13 6.4 GPa (930 ksi) 
G23 E2/3 
Poisson’s ratio 0.38 
Ply thickness 0.142 mm (0.0056 inch) 
Stacking 
sequences 

[ 45/90/02/90/ 45]s 

 

Table 3-8.  Experiment results. 

Buckling load  101.6 kN (22840 lb) 
Surface strain -0.0128 

 

Table 3-9.  Experimental results. 

 Causes Experimental variability Modeling 

Material 
properties 

Variability CV=4.25% for E1, 2.75% for 
E2, 1.5% for G12 and 5.25% 
for v12 (correlated) 

CV=6% for εlu, and εll, 10% for 
ε2l, ε2u and εl2u* (independent) 

Considering correlation 
between the parameters 
using Gaussian copula 

Thickness Variability 
 

±3% of thickness 
(0.0056×0.03=0.00269in) 

Uniform distribution for 
individual ply thickness 

Imperfection Variability ±10% of thickness 
(0.0056×16×0.1=0.00896 in) 

Uniform distribution 
Imperfection mode is 
randomly selected among 
mode 1, 2, 3, and 4 
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Table 3-10.  Uncertainty sources in structural test. 

 Causes Experimental variability Modeling 

Material 
properties 

Measurement CV=1% for E1, 3% for E2, 
G12 and v12 

Independent normal 
distributions 

Thickness Measurement ±0.08% of thickenss 
(panel thickness: 
0.0056×16=0.0896 in) 

Unifrom distribution 

Imperfection Measurement ±0.08% of thickenss Uniform distribution 
Boundary 
condition 

Imperfect BC  Torsional springs on 
nodes applying BC 

Ignored as for little effect 

Load Measurement 0.256 lb  
(experimental buckling 
load: 22840 lb) 

Ignored as for little effect 

 

Table 3-11.  Uncertainty sources on experiment. 

(200 samples) Buckling load Surface strain 

Mean 22801.01 0.0132 
Standard deviation 214.07 0.000063 
COV (std. of error) 0.93% 0.47% 
Kendal’s tau 0.15 

 

Table 3-12.  K-S test to identify the best fit CDF for buckling load and surface strain. 

 Error in buckling load Error in surface strain 

CDF type Logn Gamma 
Mean 1.0041 0.975 
Standard deviation 0.0094 0.0046 
COV (std. of error) 0.93% 0.47% 
Kendal’s tau 0.15 

 

Table 3-13.  Estimated PF with various load levels. 

Load P 

(lb) 

After test Before test 

PF  β  PF β  

2.0×104 1.14×10-1 -1.21 1.49×10-2 -1.04 

1.9×104 4.78×10-2 -1.67 6.89×10-2 -1.48 

1.8×104 1.61×10-2 -2.14 2.56×10-2 -1.95 

1.7×104 4.12×10-3 -2.64 7.04×10-3 -2.46 
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Calculation

 inpf d

 inpf m

calce

 Pf P  |calc calcf e

| calcPF e

A 
 

 ,e calc calcf e  PFf PF

PF calculation

B 
Figure 3-1.  Illustration of estimating PF distribution. A) calculating PF for the input 

uncertainties, geometric dimensions d and material properties m, with respect 
to the error values ecalc in numerical model, and B) calculating PF distribution 
based on the error distribution. 

 

 ,e calc calcf e

 PFf PF

PF calculation

       
Figure 3-2.  Illustration of the effect of tests on uncertainty in PF estimation by reducing 

uncertainty in numerical error by carrying out tests. 
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Figure 3-3.  Illustration of errors in the load-strain curve. 
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measytruex

C 
Figure 3-4.  Illustration for the effect of errors in input parameters. A) test observation for 

input and output parameters without measurement errors (ideal case) and B) 
test observation for input and output parameters with measurement errors 
(real case), C) uncertainty in output parameters for the measurement error  in 
input parameters. 
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Figure 3-5.  A scattered plot of the likelihood function (1000 samples), true error (red 

circle) and measured error (green triangle). A) Large error in test and B) 
Small error in test. 
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Figure 3-6.  Simple beam model. 
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Figure 3-7.  Curved composite laminate panel. A) Abaqus Model, B) geometry, C) 
boundary conditions and D) strain gage locations for test. 
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A  B 
Figure 3-8.  Curved composite laminate panel modeling with ABAQUS. A) Load-

Displacement (P-δ) curve (up to buckling point) and B) Load-Surface strain 
curve. 

 

 
Figure 3-9.  Effects of various imperfections (estimated simulation error).



www.manaraa.com

 

94 

CHAPTER 4 
THE EFFECT OF IGNORING DEPENDENCE BETWEEN FAILURE MODES ON 

EVALUATING SYSTEM RELIABILITY 

Motivation and Scope 

System reliability is often evaluated with the assumption of independence to make 

calculation simple by ignoring dependence between failure modes. This chapter is to 

investigate the effect of ignoring dependence between failure modes on evaluating 

system reliability. The error in calculating system reliability is investigated with respect 

to the strength of dependence between two failure modes and the ratio between two 

marginal failure modes for varied system reliability. 

Tail dependence, which is different from the strength of dependence, is introduced 

to explain the behavior of the error in system reliability by ignoring dependence. Since 

failure is occurred in the tail of a limit state distribution, tail dependence is actually 

influential to the error rather than the general dependence measures, such as the linear 

correlation coefficient and the Kendall's tau. To study the effect of dependence model, 

the error in terms of various dependence models is determined using the famous 

bivariate normal distribution and copulas. 

The chapter is composed of five sections. First section is to introduce the error due 

to ignoring dependence on calculating system reliability. A structural example of two 

trusses having two dependent component failure modes is presented to facilitate 

understanding of dependence between failure modes and the error due to ignoring 

dependence. Second section is to investigate the error using examples that have the 

widely known bivariate normal distribution (BVN) as for their dependence model. The 

concept of tail dependence is introduced with the L function as a measure of the tail 

dependence. The error by ignoring dependence with a strong tail dependence is 
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compared to that of BVN, which does not have a strong tail dependence. Third section 

is to introduce copulas to investigate the effect of different dependence models. Fourth 

section demonstrates that ignoring dependence leads to only small error in an optimal 

solution and the corresponding design weight for a reliability based optimization of the 

two trusses. Finally, summary of this chapter is presented. 

Error due to Ignoring Dependence on Calculating System Reliability 

In this section, the error due to ignoring dependence on calculating system 

reliability is quantified with structural examples with two dependent failure modes.  

Dependence between Failure Modes and Calculating Reliability 

Structural failure with multiple failure modes is modeled with uncertainties in limit 

states, which are also called output uncertainties. Dependence between failure modes 

is equivalent to dependence between output uncertainties. If there is a system with N 

failure modes, limit states are defined such that the ith failure event occurs when  

 0, 1,...,iG i N   (4-1) 

while the system is intact when 

 0, 1,...,iG i N   (4-2) 

PF of only one failure mode is referred as a marginal PF that is defined as  

  Pr 0f i iP G   (4-3) 

Two commonly used concepts for multiple failure modes are a series and parallel 

failure models. For the series failure model, the system fails if any of its failure modes is 

activated. For the parallel model, the system fails if all of its failure modes are activated 

[48]. The series failure model takes account of union of failures, and the parallel model 

takes account of intersection of failures. Both models are affected by dependence of 
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failure modes. In this chapter, the effect of ignoring dependence is discussed with the 

series model, since it is a common failure scenario in structural design.   

A series model composed of two failure modes are defined using two limit states. 

System PF with dependent two failure modes (or exact system PF) is expressed as 

     1 1Pr 0 0f sysP G G    (4-4) 

Using the well-known expansion theorem [47], the probability of the union of two events 

is decomposed as 

         1 2 1 1Pr 0 Pr 0 Pr 0 0f sysP G G G G        (4-5) 

 Approximate analytical methods have been developed to evaluate the system PF 

without integrating the joint PDF over the failure region [47-49]. However, if the error is 

not significant, assuming independence is more attractive since it makes the problem 

simple without any specialized methods. With the independence assumption, the 

system PF can be calculated based on the marginal PFs and the probability of the 

intersection with the independence assumption is expressed withEq. (4-5) and  

        1 2 1 2Pr 0 Pr 0 Pr 0 Pr 0idp

f sysP G G G G        (4-6) 

where the superscript idp represents the independence assumption. 

Illustrative Truss Example 

A simple two-member truss shown in Fig. 4-1 is used to illustrate the dependence 

between limit states. A horizontal force h and vertical force v are applied at the joint of 

two members. The truss structure has two failure modes due to the resulting stresses: 

failure of elements 1 and 2 when the corresponding stresses exceed the ultimate stress, 

1u , that the material can sustain. 

The limit state and the member force of element 1 are defined as 
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The limit state and the member force of element 2 are defined as 

 

2 2 2 2
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F


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 

 (4-8) 

It is assumed that the ultimate strength and two external forces are input 

uncertainties, and the height of the structure and angle are deterministic. The values 

and distributions of these variables will be given in the reliability-based optimization 

example section. 

Figure 4-2A shows a scatter plot of 10,000 randomly generated limit state pairs, 

G1 and G2, which shows dependence between two failure modes. The linear correlation 

coefficient between G1 and G2, is 0.79. Because the limit states are linear with respect 

to random variables and because these random variables are normally distributed, the 

joint probability density function (PDF) is bivariate Gaussian (normal). The system PF, 

Pfsys, is estimated as the ratio of the number of samples in the shaded area in Figure 4-

2A to the total number of samples. The histograms shown on both axes are marginal 

histograms representing the marginal PDF of limit states. Figure 4-2B is a contour plot 

of the joint PDF of limit states G1 and G2, based on the 10,000 samples. 

 

Error due to Ignoring Dependence for Bivariate Gaussian Joint Distribution  

It is easy to calculate the system PF if the two failure modes are assumed to be 

independent, but this incurs an error. Figure 4-3 shows the difference in intersection 

probability with and without considering dependence between the two failure modes. 
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Figure 4-3A shows 10,000 samples of the two dependent limit states. The samples are 

generated from the bivariate normal distribution with mean vector of (1.2,1.2) and the 

standard deviation vector of (1.0,1.0), and the correlation coefficient of 0.8.  The shaded 

region is the failure region. When the failure modes are assumed to be independent, the 

joint PDF is equal to the product of two marginal PDFs of limit states, whose 

corresponding samples are shown in Fig. 4-3B. The numbers of samples in the failure 

region of G1, in the failure region of G2, in the region of intersection and in the region of 

union are shown in Table 4-1. The numbers reflect the true probabilities and sampling 

errors due to the finite number of samples (the standard error in each number in Table 

4-1 is approximately equal to its square root). 

The percent error due to ignoring dependence is calculated as 

  Error 1 100 %

idp

f sys

f sys

P

P
    (4-9) 

where f sysP is the system PF with dependence considered, while idp

f sysP  is the probability 

assuming independence. The reliability index  1   fP  is another widely used 

measure, where  1  is the inverse of cumulative distribution function (CDF) of 

standard normal distribution.  The error in terms of reliability index is expressed as 

 
 
 

 
1

1
Error 1 100 1 100 %

idpidp
f syssys

sys f sys

P

P










     


 (4-10) 

where  idp

sys is reliability index ignoring dependence and sys is the reliability index with 

dependence considered. 
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The Effect of Ignoring Dependence on Error in System Reliability 

Error in System Reliability for Bivariate Normal Dependence Model 

In this section, the effect of ignoring dependence between failure modes is shown 

with respect to two parameters; the magnitude of system PF and the strength of 

dependence given in terms of the linear correlation coefficient  . A hypothetical system 

is assumed with two failure modes and has a bivariate normal distribution (BVN) for a 

joint PDF of limit states. By changing parameters of BVN, the effect of the level of PF 

and  on the error is studied.  

Both failure modes are first assumed to have the same marginal PFs; that is, both 

have the same PF. The effect of different marginal PFs will be discussed later. The 

exact system PF is calculated from Eq. (4-5), while the system PF ignoring dependence 

is calculated from Eq. (4-6). 

Since BVN is the joint PDF of limit states, marginal distributions are normal. The 

mean and standard deviation of the marginal distributions are set to z and 1, 

respectively. By changing the mean and the correlation coefficient, the magnitude of 

system PF and the strength of dependence are varied. The joint PDF of limit states and 

parameters are defined as 

 
1

2

2

1
~ ,

1

G z
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G z
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

      
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      

 (4-11) 

where  2 , N  is BVN of G1 and G2. Since the failure is associated with negative values 

of limit states, the intersection probability of the two failures is obtained with CDF of the 

BVN. The Error is calculated with Eqs. (4-9) and (4-10). The strength of dependence is 

usually categorized from very weak to very strong in terms of the linear correlation 
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coefficient, ρ [55]. The strength of dependence is categorized to moderate, strong and 

very strong for 0.4 ≤ ρ ≤ 0.7, 0.7 ≤ ρ ≤ 0.9, and 0.9 ≤ ρ ≤ 1, respectively. The error is 

calculated for strong correlation (0.7-0.9) in terms of the system PF with the range of 10-

1 to 10-6. 

The errors in reliability index and the PF due to ignoring dependence are shown in 

Figure 4-4 with five different linear correlation coefficients. The errors in reliability index 

and PF decrease as system reliability index increases regardless the magnitude of the 

linear correlation coefficient. In Table 4-2, even with strong dependence between failure 

modes, ρ=0.8, the error in PF is less than 10% for the PF level less than 10-4, and error 

in reliability is lower than 1% for reliability levels lower than 3.28. The observations imply 

that the interaction between failures becomes weak when PF is small. 

The errors in reliability index and PF due to ignoring dependence are shown in Fig. 

4-4 for different linear correlation coefficients. The errors in reliability index and PF 

decrease as system reliability index increases regardless the level of linear correlation 

coefficient. In Table 4-2, even with strong correlation between failure modes, ρ=0.8, the 

error in PF is less than 10% for the PF level less than 10-4, and the error in reliability 

index is lower than 1% for the level of reliability index lower than 3.28. The observations 

imply that the interaction between failure modes becomes weak when PF is small. 

One can see from Table 4-2 and Fig. 4-4 that the error in reliability index is much 

smaller than the error in PF. At this point, it is appropriate to note that at low 

probabilities of failure, small errors in input distributions may lead to small errors in 

reliability index but large errors in PF. Therefore, striving for very accurate small PF is 

out of reach anyhow. For example, distributions of failure stresses are typically based 
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on samples of 100 tests or less. The standard error of a standard deviation of a normal 

distribution based on a sample of 100 is 7%. At a PF of 10-4, this 7% error would lead to 

approximately 7% error in reliability index, but more than 50% error in PF. 

The Effect of Tail Dependence on the Error in System Reliability 

One way of measuring the dependence in the tail region is the shape of 

distribution. As shown in Fig. 4-3, independent distributions have circular-shaped 

contour at the failed tail region, while dependent distributions have a sharp contour in 

this region. For independent modes with a low PF, the low-left region of the contour is 

locally circular. On the other hand, if we had a distribution that is sharp in that region, as 

illustrated in Fig. 4-5B, it indicates that the tail dependence between the two failure 

modes is strong. The linear correlation coefficient is not enough to evaluate the level of 

tail dependence because the BVN shown in Fig. 4-5A has weaker tail dependence than 

the other distribution shown in Fig. 4-5B while they have the same correlation coefficient 

of 0.8. 

For distributions with strong tail dependence, we may expect that the error in PF 

decrease slowly, or will not decrease with decreasing PF. Thus, measuring the degree 

of tail dependence is important, for which we rely on a statistical measure, denoted by L 

[57], for the lower tails of two distributions.  The L function is the ratio between 

probability of intersection and marginal probability. When independence assumption is 

applied to the PF, it is the ratio between the probability of double failure and the 

probability of the first mode of failure (or the second since they are the same).  More 

formally, the ratio is defined as a function of marginal PF as 

       
1 2

1 1

1 2Pr , /G GL z G F z G F z z     (4-12) 
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where z is marginal probability.  
1

1

GF z  is the inverse CDF of G1 for given probability z. 

 The reason that this ratio is relevant to our case is that the system PF is the sum 

of the two marginal probabilities of failure minus the probability of intersection (see Eq. 

(4-5)). With the assumption of independence, the L function becomes z because the 

probability of the intersection is the square of the marginal probability. The error is then 

about a half of the difference between L and z. 

Figure 4-6A shows the degree of dependence in the tail of BVN as function of 

marginal probability and the correlation coefficient. When two limit states are 

independent, ρ=0, the probability of the intersection is the square of marginal 

probability, and the ratio is nothing but the marginal probability; i.e., L(z) = z. One can 

read an approximate error for different levels of system PF. For example, when z=10-5, 

the system PF is approximately 2x10-5, and for ρ =0.8, we see that L=0.14, which 

estimates about a 7% error in PF. 

There are cases that the error does not decrease as the level of system PF 

decreases because of strong tail dependence. Figure 4-6B shows curves of L function 

for three different degrees of tail dependence. Here, they have the same correlation 

coefficient and tail dependence of the joint PDF with strong tail dependence is 

compared to that of BVN in terms of L function.  

The red L function curve in Fig. 4-6B, a weak tail dependence case, converges 

faster than that of BVN. The error of neglecting dependence is smaller than that of BVN 

for the same system PF and the error becomes negligible even for a relatively large 

system PF. However, the green L function curve in Fig. 4-6B, a strong tail dependence 

case, does not decrease; error remains the same even for a very small system PF. The 
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behavior of L function shows that the degree of dependence is very strong even in the 

extreme tail that there is almost no change in the L function.  

Figure 4-7A shows the variation of error as a function of the level of system PF for 

different tail dependences. For a weak tail dependence, even with a strong correlation 

coefficient, ρ=0.8, the error in PF is less than 10% for the PF level less than 5×10-2. On 

the other hand, for a strong tail dependence, the error stays high even for a low PF. On 

the other hand, in terms of the reliability index in Fig. 4-7B, even a strong tail 

dependence does not change the trend of low errors for high values of reliability index 

(low values of the PF). 

Table 4-3 presents the magnitudes of maximum system PF and minimum 

reliability index for different target errors. For example, for the weak tail dependence, in 

terms of reliability index, there is only 1% error when system reliability index is 1.98. 

From Table 4-3, we can observe that the error in system PF will not reduce, or 

reduce more slowly with decreasing PF, while the error in reliability index will still reduce 

even for distributions with strong tail dependence. A positive side is that the error in 

reliability index decreases even with strong tail dependence as shown in Fig. 4-7B.  

We use the L function as a measure of the degree of tail dependence herein. 

Another common approach to measure the degree of tail dependence is to estimate 

TDC [38,58]. The limit of L is referred to as tail dependence coefficient (TDC) that 

represents the strength of tail dependence [38,54]. 

  
0

lim
z

TDC L z


  (4-13) 

L for BVN converges to zero as z approaches zero that error due to ignoring 

dependence decreases as system PF decreases. However, distributions with strong tail 
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dependence have non zero TDC. Unfortunately, accurate TDC estimation to determine 

the degree of tail dependence requires more than 1,000 samples, which may always not 

be feasible [58]. 

Error in System Reliability for Various Dependence Models Defined with Copulas 

Copula Theory 

The previous sections presented results for BVN and generic strong and weak 

dependence. In this section, a more general approach will be taken to describe 

correlation types of distributions. Joint distributions are often modeled by using copulas, 

and four common copulas in Fig. 4-8 are used to explain the tail dependence and error 

in neglecting the dependence. 

The word ‘copula’ is a Latin noun which means “a link”. The word was employed in 

a statistical term by Sklar (1959) in the theorem describing the functions that join 

marginal CDF to form a joint CDF [18]. this context, copula is a function that links a joint 

CDF to its marginal CDFs [52-54]. Copula is a joint CDF whose one-dimensional 

margins are uniform in the interval (0,1). Copula is an important concept for modeling a 

joint CDF that includes dependence.  

It is noted that BVN is defined with Gaussian copula with normal marginal 

distributions but a Gaussian copula is not limited to BVN or multivariate normal 

distribution. The marginal distributions of Gaussian copula can be any distribution. For 

example, we will observe the behavior associated with a Gaussian copula when the 

marginal distributions are Gumbel distributions. 

Let  1 2, ,...,
T

nY Y YY  be a vector of n-dimensional random variables, which are defined 

with marginal CDFs,  
iY iF y . The probability of intersection is a function of dependence. 
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The probability of intersection of n-dimensional random variables is also called a joint 

CDF that is defined as 

    
1 ,..., 1 1 1,..., Pr ,...,

nY Y n n nF y y Y y Y y    (4-14) 

Copula functions defines the joint CDF with marginal CDFs 

       
1 1,..., 1 1,..., ,...,

n nY Y n Y Y nF y y C F y F y  (4-15) 

where C is a copula function. Note that copula functions are independent to 

marginal CDFs and all arguments of copula function have a domain of [0, 1]. Also, due 

to the property of multivariate CDF, the output of the copula function also has a domain 

of [0, 1]. 

Figure 4-9 shows L function for the copulas shown in Fig. 4-8. As expected, the 

copula with a sharp tail, Clayton, has a very strong tail dependence. Gaussian copula 

has stronger tail dependence than Gumbel and Clayton copulas. 

It is noteworthy that the type of marginal distributions is immaterial as far as the 

error due to ignoring dependence is concerned. The error is a function of the magnitude 

of system PF and the type of copula. For example, if the marginal distributions are 

lognormal and the copula defining the joint distribution is Gaussian, then the error will 

be the same as in the case of BVN. The readers can refer to Appendix B for detailed 

explanation. 

The Effect of Marginal Distributions on the Errors due to Ignoring Dependence 

Since copula is independent to marginal distributions, error depends on copulas. 

For example, dependence of two correlated random variable pairs are defined with 

same copula and marginal PFs are the same, the type of marginal distributions are 

independent to error. 
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Figure 4-10A and Figure 4-10B show joint PDF contours of two failure modes. 

Figure 4-10A shows a joint PDF contour with different marginal distributions of limit 

state, the extreme distribution for G1 and the normal distribution for G2. Figure 4-10B 

shows a joint PDF contour with the same marginal distributions, the normal distribution 

for G1 and G2. They have the same marginal PFs (Pf1 = Pf2 = 0.1265) and 

dependence model (the Gaussian copula with ρ=0.7). The shaded region is the region 

of intersection PF. The Two joint PDFs of the limit states have different contour shapes. 

However, their errors are the same 19.8% since their marginal PFs and copula models 

modeling dependence are the same. 

The Effect of Ignoring Dependence for Different Copulas 

In the previous section, the error due to ignoring dependence for BVN, which is 

defined with a Gaussian copula, is shown as a function of the magnitude of system PF 

and the correlation coefficient. In this section, the errors with different dependence 

models are defined with Clayton, Gumbel and Frank copulas. Since the type of marginal 

distributions is immaterial to the error, the normal distributions are used as marginal 

CDFs. Then, the errors are calculated in terms of system PF and reliability index. The 

system PF shown in Eq. (4-5) is rewritten using copula as 

 
        

 
,

1

0; ,1 0; ,1 0; ,1 , 0; ,1 ,f sys

sys f sys

P F z F z C F z F z

P



 

  

 
 (4-16) 

The magnitude of PF and the strength of dependence are controlled by changing z 

and θ. PF ignoring dependence is expressed as 

        , 0; ,1 0; ,1 0; ,1 0; ,1f sysP F z F z F z F z    (4-17) 
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The errors in Eqs. (4-9) and (4-10) are shown in Fig. 4-11 for a range of correlation 

coefficients. It is observed that the error in reliability index decreases as system 

reliability increases even for strong tail dependence. In the case of system PF, however, 

the error does not decrease for the Clayton copula, but the error decreases for the other 

two copulas. 

Although the Kendall’s tau is used to define the level of dependence, the 

corresponding linear correlation coefficient is shown for the purpose of consistency. 

Since there is no universal way to convert Kendall’s tau to the linear correlation 

coefficient, we generate 10,000 samples with a given level of Kendall’s tau, from which 

the corresponding linear correlation coefficient is calculated. This process is repeated 

for different Kendall’s tau to find the specific value of linear coefficient. It is noted that 

different copulas yield different values of linear correlation coefficients for the same 

value of Kendall’s tau. For example, Kendall’s tau of 0.63 with the Clayton copula and 

standard normal marginal distributions has the strength of dependence 0.8 in terms of 

the correlation coefficient. Kendall’s tau of 0.599 with the Gumbel copula and standard 

normal marginal distributions has the same dependence in terms of the correlation 

coefficient.  

Table 4-4 presents the magnitudes of minimum system reliability indices for 5% 

and 1% target errors. From Fig. 4-11 and Table 4-4, we see that, as expected, for the 

Frank and Gumbel copulas, which have weak tail dependence, the errors in the 

reliability index decay fast for high reliability index. However, even for the Clayton 

copula with a strong tail dependence, the error reduces relatively fast. Error in the 

reliability index converges to zero as the reliability index increases. In Table 4-5, the 
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magnitudes of maximum system PFs for 10% and 5% errors are shown. The errors in 

PF with Gumbel and Frank copulas decrease as reliability indices increase since they 

have a  weak tail dependence. For Frank copula, the error becomes less than 5% at the 

level of 10-3 even at the very large correlation coefficient of ρ = 0.9. For the Clayton 

copula model, on the other hand, the error in PF increases as reliability increases due to 

its strong tail dependence. 

In Table 4-5, magnitudes of system PFs for 10% and 5% errors are shown. Error 

in the reliability index converges to zero as the reliability index increases. For the error 

in PF with Gumbel and Frank copula, it decreases as reliability index increases since 

they don't have strong tail dependence. Frank copula with weak tail dependence, the 

error becomes less than 1% at the level of 10-4 even at the very large correlation 

coefficient of ρ = 0.9. For the Clayton copula model, on the other hand, error in PF 

increases as reliability increases due to its strong tail dependence. 

The Effect of the Ratio between Marginal Probabilities of Failure 

The effect of the ratio between marginal PFs also turns out to have a significant 

effect on the error. The Gaussian and Clayton copulas are considered since the other 

copulas have a small error because of their weak tail dependence.  

The ratio between Pf2 and Pf1 is denoted as α as 

 2 1f fP P  (4-18) 

Figure 4-12 shows the error with respect to the magnitude of reliability index and 

logarithmic PF while the strength of dependence is kept as ρ = 0.8. From the graphs, it 

is clear that the error is maximal when the ratio is 1 and decreases substantially with 
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increasing ratio. For a strong tail dependence copula, Clayton, the effect is most 

dramatic so that by the time the ratio is 8, even the errors in PF are near 10%. 

As the ratio increases, the error in reliability index and the error in PF decrease. 

Table 4-6 shows minimum reliability index for 5% and 1% error with respect to the ratio 

of marginal PFs. The error monotonically decreases as reliability index increases. Table 

4-7 shows maximum system PF for 10% and 5% error with respect to the ratio. For 

Gaussian as a dependence model, the PF for 10% error is 1.4×10-4 for the ratio of 1 and 

the PF for 10% error is 1.7×10-4 for the ratio of 4. For the ratio of 8, the error is less than 

10% for all PF variation. For Clayton, the error is always larger than 10% but the ratio of 

marginal PFs affects the error a lot as shown in Fig. 4-11D. 

Reliability-based Design with Multiple Failure Modes 

Reliability-based design optimization (RBDO) is performed to demonstrate further 

the effect of ignoring dependence for a structure which is required to be highly reliable. 

The previous truss structure in Fig. 4-1 is used for RBDO. The optimization formulation 

is given as 

 

 

 

    

1 2

1

1 2

: 45

:

Pr 0 0

allow f sys

f sys

Minimize Mass A A

subject to P

P G G



 

   

 

  

 (4-19) 

where A1 and A2 are design variables. FORM is used to evaluate marginal PFs during 

design optimization iterations and the system PF is calculated by assuming 

independence. Since the limit states are linear functions of random variables, FORM 

provides exact marginal PFs of two failure modes, the failure modes are statistically 

dependent. Table 4-8 shows input variables. 
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Figure 4-13A shows the weight and system reliability index in terms of design 

variables. The solid lines with label (equivalent reliability index) are exact contour lines 

for system reliability index and the dashed lines are corresponding contour lines with 

independence assumption. The discrepancy between the solid line and the dashed lines 

represents the error, and the difference in weight due to the error is defined as a weight 

penalty. For the same allowed system reliability index, some part does not have 

discrepancy between two constraint lines since one failure mode is dominant so that 

there is no error in calculating the system reliability index. The filled 2D contour is 

weight, where light gray represents heavy weight and dark gray represents light weight. 

Optimum solution provides minimum weight while the system reliability index constraint 

is not violated. The star marker is the exact optimum solution and the circle marker is 

the optimum solution ignoring dependence for the target system reliability of βallow = 3.  

As shown in Figs. 4-11 and 4-12, the magnitude of error is inversely proportional 

to the system reliability index. For the target system reliability of βallow = 3, the error is 

very small, while the errors for βallow = 1.5 (PFallow=0.067) and βallow = 2 (PFallow=0.023) 

are clearly visible. 

Figure 4-13B shows minimum weight for given allowed system reliability indices. 

The star and circle markers are the exact optimum solution and the optimum solution 

with independence assumption, respectively. There is 3.1% weight penalty for βallow = 

1.5 and the weight penalty is reduced to 0.5% for βallow = 3.5. 

For the allowable reliability index of 3.5, at the optimal design point, the correlation 

coefficient between the two failure modes is 0.8 and the ratio between marginal 

probabilities of failure is 1.12 (P1=0.00014 and P2=0.00012). 
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It is noteworthy that the strong correlation is due to the fact that randomness in the 

loads and strength affects the two failure modes in a similar way. That dependence 

does not mean that design improvement in one failure will affect the other failure. For 

this optimization problem, A1 will affect only the reliability of element 1 and A2 will affect 

only the reliability of element 2. 

Summary 

In this chapter, the effect of ignoring dependence between failure modes was 

studied. The effects of tail dependence and the ratio between marginal PFs were found 

to be significant. For low probabilities of failure, we can conclude that: 1) for errors in 

system reliability index, we can neglect dependence even for strong tail dependence; 

and 2) for errors in system PF, we can neglect dependence when the ratio of marginal 

PFs is high or tail dependence is not very strong. 

To demonstrate the effect of ignoring dependence, we started with two failure 

modes obeying the bivariate normal (BVN) distribution. For the BVN with strong 

dependence with a correlation coefficient of ρ = 0.8, there is 1% error in the system 

reliability index at 3.28, and there is 10% error in system PF at 10-4. 

For other distributions, the decay of errors with increasing reliability index depends 

on a parameter called tail dependence. To illustrate the effect of tail dependence, we 

studied four commonly used copulas, Gaussian, Clayton, Gumbel and Frank copulas. 

For strong tail dependence between failure modes, such as the Clayton copula, 

the errors in system PF do not decay even for a low system PF. However, the errors in 

system reliability index still decay fast for high reliability index. Possibly, small errors in 

large values of reliability index are acceptable even if the relative errors in PF are high. 
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This is because similar large errors in PF are inevitable due to small errors in input 

distributions. 

It is also found that the ratio between marginal PFs is influential to the error, 

especially for strong tail dependence. It is observed that the errors in PF are small when 

the ratio of marginal PFs is larger than 8 even for a strong tail dependence. 
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Table 4-1. The number of samples in Fig. 4-3 (numbers in parenthesis are the numbers 
expected from the exact probabilities). 

# of samples 
Considering 
dependence 

Ignoring 
dependence 

G1 < 0 1182 (1151) 1126 (1151) 
G2 < 0 1153 (1151) 1198 (1151) 
G1 < 0 and G2 < 0 679 (665) 138 (132) 
G1 < 0 or G2 < 0 1656 (1637) 2186 (2170) 
 

Table 4-2. Effect of linear correlation coefficient on minimum reliability index and 
maximum PF for the target errors due to ignoring dependence with two failure 
modes defined with BVN. 

Reliability 
measure 

Target 
error  

ρ =0.7 ρ =0.75 ρ =0.8 ρ =0.85 ρ =0.9 

Reliability 
index 

5% 1.68 1.79 1.93 2.10 2.31 
1% 2.82 3.03 3.28 3.60 4.04 

Probability 
of failure  

10% 3.4×10-3 9.4×10-4 1.4×10-4 6.4×10-6 1.6×10-8 
5% 1.7×10-4 2.4×10-5 1.4×10-6 1.1×10-8 1.5×10-11 

 

Table 4-3. Minimum reliability index and maximum PF needed for the target errors with 
respect to the strength of tail dependence for given magnitudes of error. 

Reliability 
measure 

Target 
error  

ρ =0.8 
(BVN) 

ρ =0.75 
(strong tail 
dependence) 

ρ =0.8 
(weak tail 
dependence) 

Reliability index 
5% 1.93 3.13 1.44 
1% 3.28 6.92 1.98 

Probability of 
failure  

10% 1.4×10-4 N/A 5.0×10-2 
5% 1.3×10-6 N/A 2.5×10-2 

 

Table 4-4. Minimum reliability index for 5% and 1% target errors (in reliability index) 
versus the strength of dependence measured by the linear correlation 
coefficient. 

Copula 
Target 
error \ ρ 

ρ =0.7 ρ =0.75 ρ =0.8 ρ =0.85 ρ =0.9 

Clayton 
5% 2.88 3.01 3.14 3.26 3.38 
1% 6.50 6.72 6.92 7.10 7.27 

Gumbel 
10% 1.40 1.50 1.63 1.78 1.96 
5% 2.27 2.42 2.60 2.82 3.12 

Frank 
10% 1.30 1.37 1.44 1.53 1.63 
5% 1.86 1.92 1.98 2.06 2.17 
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Table 4-5. Maximum system PF for 10% and 5% target errors in PF (not error in 
logarithm of PF) with respect to the strength of dependence measured by the 
linear correlation coefficient. 

Copula 
Target 
error  

ρ =0.7 ρ =0.75 ρ =0.8 ρ =0.85 ρ =0.9 

Clayton  N/A 

Gumbel 
10% 3.72×10-2 2.07×10-2 9.63×10-3 3.21×10-3 5.64×10-4 
5% 1.54×10-4 4.79×10-5 9.58×10-6 8.52×10-7 7.29×10-8 

Frank 
10% 7.7×10-2 6.3×10-2 5.0×10-2 3.9×10-2 2.7×10-2 
5% 7.3×10-3 6.0×10-3 4.9×10-3 3.8×10-3 2.7×10-3 

 

Table 4-6. Minimum reliability index for 5% and 1% target errors versus the ratio with ρ 
= 0.8. 

Copula 
Target 
error  

ratio =1 ratio =2 ratio =4 
ratio =8 

Gausian 
5% 1.94 1.84 1.56 1.14 
1% 3.28 3.19 2.94 2.54 

Clayton 
10% 3.14 2.68 1.92 1.25 
5% 6.96 6.14 4.63 3.31 

 

Table 4-7. Maximum system PF for 10% and 5% target errors with respect to the ratio 
with ρ = 0.8. 

Copula 
Target 
error  

ratio =1 ratio =2 ratio =4 
ratio =8 

Gaussian 
10% 1.4×10-4 2.7×10-4 1.7×10-3 N/A 
5% 1.3×10-6 2.5×10-6 1.4×10-5 2.9×10-4 

Clayton  N/A 

 

Table 4-8. Input variables. 

Uncertainty variables Deterministic variables 

Vertical force (v) N(30000, 45002) KN Angle (α) 45 (degree) 
Horizontal force (h) N(7000, 3502) N Height (l) 1 m 
Ultimate strength (σu) N(250,12.52) MPa   
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Figure 4-1.  A simple truss example in biaxial loading. 
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Figure 4-2.  Scattered plot of two limit states. A) Scatter plot of random samples  
(shaded region is the failure region) and B) Contour plot of the joint PDF of G1 
and G2. 
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A B 
 
Figure 4-3.  Difference between intersection probabilities with and without considering 

dependence. A) Scatter plot considering dependence and B) Scatter plot 
ignoring dependence. 
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Figure 4-4.  The variation of error with the magnitude of system PF for bivariate normal 

distribution with equal failure probabilities for the two modes. A) Error vs 
reliability index (BVN) and B) Error vs PF (BVN). 
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Figure 4-5.  Randomly generated 10000 samples having different tail shapes with a 

linear correlation coefficient of 0.8. A) ρ =0.8 (BVN) and B) ρ=0.8 (strong tail 
dependence). 
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Figure 4-6.  Curves of L function with respect to the strength of dependence and tail 

shape of joint PDF (Asymptotic value of L(z) for z→+0 is 0). A) L function for 

different values of the strength of dependence (BVN) and B) L function with 
respect to the shape of joint PDF. 
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Figure 4-7.  The magnitude of error with respect to the strength of tail dependence. A) 

Error vs PF and B) Error vs reliability index. 
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Figure 4-8.  Four joint PDF shapes with commonly used copulas with two standard 
normal marginal distributions with a linear correlation coefficient of 0.7. A) 
Gaussian copula, B) Clayton copula, C) Gumbel copula and D) Frank copula. 
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Figure 4-9.  L functions for different copulas. A) L function in extreme tail region and B) 
L function for macroscopic scale. 
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Figure 4-10.  Two joint PDFs that have different marginal PDFs for the limit states, but 
the same individual PFs. A) G1 follows the extreme distribution with location 
parameter α=2 and scale parameter β=1, G2 follows the normal distribution 
with mean µ=1.143 and standard deviation of σ=1; marginal PFs, G1 and G2, 
are the same Pf1 = Pf2 = 0.1265 and B) G1 and G2 follow the normal 
distribution with mean µ=1.143 and standard deviation of σ=1; marginal PFs, 
G1 and G2, are the same Pf1 = Pf2 = 0.1265. 
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Figure 4-11.  The relative error in reliability index and PFs versus system PF. A) Error 

vs reliability index (Clayton) B) Error vs log PF (Clayton) C) Error vs reliability 
index (Gumbel) D) Error vs log PF (Gumbel) E) Error vs reliability index 
(Frank) and F) Error vs log PF (Frank). 
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Figure 4-12.  The magnitude of error with respect to the ratio between marginal PFs. A) 

Error versus reliability index for the ratio between marginal PFs (Gaussian) B) 
Error (in PF) versus log PF for the ratio between two PFs (Gaussian) C) Error 
versus reliability index for the ratio between marginal PFs (Clayton) and D) 
Error (in PF) versus log PF for the ratio between two PFs (Clayton). 
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Figure 4-13.  Visualization of probabilistic optimization results. A) Weight (bright and 

dark color represent heavy and light weight, respectively) and constraint lines 
with respect to the magnitude of allowable reliability index and B) Minimum 
A1+A2 and corresponding reliability index.
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CHAPTER 5 
CONCLUDING REMARKS 

In this work, we first investigated the effects of coupon and element tests on 

design weight of a structural element for achieving a certain safety level. The process to 

estimate element strength based on coupon tests and failure theory and the process to 

reduce the error in estimated element strength with element tests were modeled. Both 

epistemic and aleatory uncertainties were considered in the model. For epistemic 

uncertainty, the sampling uncertainty in coupon, error in failure theory due to imperfect 

failure theory, and the sampling uncertainty in element tests were considered. For 

aleatory uncertainty, variabilities in coupon and element tests were considered. A 

method to estimate 95% conservative element strength was developed based on 

quantification of remaining uncertainty after tests using Bayesian inference and the 

convolution integral. 

Through numerical examples, typical variability in the coupon tests (7%) and in the 

element tests (3%) and error in failure theory (±5%) were assumed. It was observed 

that element test is more influential than coupon test. This is because the error in failure 

theory is commonly larger than the sampling uncertainties in coupon tests. When failure 

theory is very accurate (±1%), coupon test is more influential than element test. 

We moved to more complex problem to prove the effect of test. A composite panel 

with a hole model was used for this study and buckling and strength failure modes were 

considered. Since it turned out that the effect of coupon test is limited, for this study, the 

effect of element test on reducing reliability was investigated. Unlike common approach 

to calculate reliability, which calculates reliability based on only aleatory uncertainties, 

the effect of epistemic uncertainty in reliability calculation is considered separately, from 
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which a distribution of PF due to the epistemic uncertainty was obtained. The effect of 

test was quantified by measuring the change of the PF distribution according to test. 

Since the composite model has two failure modes, PF is calculated based on 

predictions of buckling load and strength failure load with the two corresponding errors 

in predictions contributing to PF. However, typically a single test is performed for 

structures like the composite panel due to limited resources. An efficient way to include 

the single test results to reduce both prediction errors was investigated. 

To calculate PF considering two failure modes, dependence between two failure 

modes have to be properly considered. A decomposition method that decomposes two 

dependent failure modes into two independent failure modes was developed to simplify 

calculating system reliability without applying any assumptions. With the decomposition 

method, PF can be calculated by summing two marginal PFs of the decomposed failure 

modes. 

For applying reliability based design on system design, multiple failure modes are 

often assumed to be independent to avoid complex system reliability calculation with 

ignoring dependence between failure modes. The error of ignoring dependence 

between failure modes on evaluating system reliability was investigated by varying the 

strength of dependence and the ratio between marginal reliabilities. Errors in two 

frequently used measures, PF and reliability index, were calculated. We found that, the 

error in reliability index is always negligible when system reliability is very high even for 

strong dependence between failure modes. The error in PF is also usually negligible 

when system reliability is very high but the error is not small with high system reliability 

when tail dependence of two component failures is strong. It has to be kept in mind, 
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however, that for high reliability, it is very difficult to get accurate probabilities even for 

one failure mode, because the probability of failure is sensitive to small errors in input 

distribution. We illustrated the effect of ignoring dependence between failure modes for 

the design of a 2-bar truss.  RBDO ignoring dependence between two bar failures led to 

only 0.5% heavier design than RBDO using exact system reliability calculation. 
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APPENDIX A 
STATISTICAL FORMULATION OF POSSIBLE TRUE DISTRIBUTIONS 

Possible True Distribution of Material Strength 

The possible true failure strength of coupons, ,c Ptrue , is firstly defined as a 

conditional distribution, 

      , , , , , , ,
ˆ ˆ ˆ, ~ ,c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c PtrueN         (A-1)  

where 
, , , , ,
ˆ ˆ ˆ( , )c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue      is a conditional random variable given 

, ,
ˆ

c Ptrue c Ptrue   and , ,
ˆ

c Ptrue c Ptrue  . Considering that ,
ˆ

c Ptrue and ,
ˆ

c Ptrue are random, Eq. (A-

1) corresponds to an incident of possible true distributions. Normally, a designer has a 

set of coupons, from which the PTD of parameters need to be estimated. It is obvious 

that different sets of coupons may yield different estimations of ,
ˆ

c Ptrue  and ,
ˆ

c Ptrue  due to 

uncertainty in sampling.  

The conditional distribution in Eq. (A-1) is repeatedly generated (inner loop) with 

randomly generated samples of ,
ˆ

c Ptrue and ,
ˆ

c Ptrue (outer loop). In the outer loop, N 

samples of mean μi (i=1,2,...,N) and standard deviation σi are generated from the PTDs 

of mean and standard deviation, and they are used to make N conditional distributions 

as in Eq. (A-1). In the inner loop, M samples of possible true failure strengths are 

generated from individual conditional distributions with a pair of the generated mean 

and standard deviation N(μi,σi). Therefore, N×M samples are used to estimate the PTD 

of failure strength.  

 The PTDs of mean and standard deviation are in practices estimated from a 

single set of coupon tests. Let us assume that nc coupons are tested, whose mean and 

standard deviation are ,c test  and ,c test , respectively. Then, these values can first be 
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used to estimate the PTD of mean, which is nothing but the distribution of sample mean. 

Since it is assumed that ,ĉ true  is normally distributed, the sample mean also follows a 

normal distribution [13]. Therefore, the PTD of mean can be estimated by 

 
,

, ,
ˆ ~ ,

c test

c Ptrue c test

c

N
n


 

 
 
 

 (A-2)  

It is also well known that the standard deviation ,
ˆ

c test  follows a chi-distribution of 

order 1cn  . In a way similar to the mean, the PTD of standard deviation can be 

estimated by 

 ,

,

ˆ
ˆ

1

c test

c Ptrue

c

c

n


 

  
and  ˆ~ 1cc n   (A-3) 

Based on Eq. (A-2) and Eq. (A-3), estimated standard deviations of ,
ˆ

c Ptrue  and 

,
ˆ

c Ptrue  can be calculated, respectively, by  

 Estimated standard deviation of ,
ˆ

c Ptrue
,c test

cn


  (A-4) 

 

Estimated standard deviation of ,
ˆ

c Ptrue =
 

 

  

2 2

,2

, 2

2
2

1 1 2

c test c

c test

c c

n

n n







  
 

(A-5) 

Note that we can calculate true standard deviations for given number of samples with 

Eq. (A-4) and Eq. (A-5) when we know true standard deviation of population instead of 

the test standard deviation from samples.  

Finally, from Eq. (A-1) to Eq. (A-3), PTD of material strength is derived as 

 
 

     

, ,

, , , , , , , , ,
0

| ,

c Ptrue c Ptrue

c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue c Ptrue

f

f f d d 



       
 


  

  (A-6) 

 



www.manaraa.com

 

128 

Possible True Distribution of Element Strength 

The PTD of element mean failure strength can be expressed as 

 
     , , , , , , , ,| de Ptrue e Ptrue e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue c Ptruef f f      




   (A-7) 

which is in the form of the convolution integral. The conditional PDF 

 , , ,|e Ptrue e Ptrue c Ptruef    corresponds to the distribution of 
3 ,
ˆ

d Ptruek . In the following, the two 

PDFs in the integrand will be explained. 

In this dissertation, 3 , 1d calck   is used for simplicity, and it is assumed that ,k Ptruee  

follows a uniform distribution with bounds eb  as 

  
,

, ,

1
if

2

0 otherwise

k Ptrue e

ek Ptrue k Ptrue

e b
bf e




 



 (A-8) 

By using Eq. (A-8),  , ,e Ptrue e Ptruef  can be obtained from all possible combinations 

of random variables generated from  , ,k Ptrue k Ptruef e  and  , ,c Ptrue c Ptruef  . For a given 

sample of ,c Ptrue , the PTD of element failure strength can be regarded as a conditional 

PDF  
, , ,|

e Ptrue e Ptrue c Ptruef   , which is a uniform distribution with a width of 2 eb  and mean 

at ,c Ptrue .    

  
,

, , , , ,

1
if 1

| 2

0 otherwise

e Ptrue

e

e Ptrue e Ptrue c Ptrue e c Ptrue c Ptrue

b
f b



   


 

 



 (A-9) 

The PDF in Eq. (A-9) represents the prediction error of a given failure theory. The 

PTD  , ,e Ptrue e Ptruef   can be calculated by considering all possible values of ,c Ptrue with 

Eq. (A-9). 
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By using Eq. (A-9), PDF of the PTD of ,c Ptrue is calculated from coupon test results 

as 

   ,

, , , ,| ,
c test

c Ptrue c Ptrue c Ptrue c test

c

f
n




   

 
  

 
   

(A-10) 

where the notation  | ,x a b  denotes the value of normal PDF with mean a and 

standard deviation b at x. Samples of ,c Ptrue  are generated from Eq. (A-10), which is 

then used in Eq. (A-9) to generate samples of ,e Ptrue . Figure A-1 illustrates the 

conditional PDF of ,e Ptrue for a given sample of ,c Ptrue , which is drawn from 

 , ,c Ptrue c Ptruef   based on ,c test . Note that ,e true is given as a unique value, and is 

covered by the PTD  , , ,|e Ptrue e Ptrue c Ptruef   . 

With Eq. (A-9) and Eq. (A-10), the convolution integral in Eq. (A-7) can be directly 

integrated as 

 

 
 

 
,

,

1 ,

, , , , ,

,1

1
| ,

2

e Ptrue

e

e Ptrue

e

b c test

e Ptrue e Ptrue c Ptrue c test c Ptrue

e c Ptrue cb

f d
b n






    







 
  

 
 


 

(A-11) 

The PDF in Eq. (A-11) is a prior distribution of mean failure strength of elements, 

which includes the effect of uncertainty from failure theory as well as that of a finite 

number of samples. 

It is reasonable assumption that there is a correlation between variability in 

manufactured structural elements and variability in coupons, since the structural 

element is made of the material. As predicting the mean failure strength, we considered 

the error in failure theory and the effect of a finite number of coupon specimens to 

estimate variability of the manufactured elements. When a random variable is normally 
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distributed, the sampling distribution of standard deviation follows a chi-distribution [13]. 

Standard deviation of element failure strength ,e true can be directly obtained from 

the ,c true as 

 , 3 , ,e true d true c truek   (A-12) 

where ,truee is the true error in 3 ,d truek . Due to the lack of knowledge of the relation 

between ,e true and ,c true  (epistemic uncertainty), and a finite number of specimens, the 

PT standard deviation of element failure strength ,
ˆ

e Ptrue  can be obtained by Eq. (A-12) 

in terms of two PT variables.  

 , 3 , , ,
ˆ ˆ ˆ(1 )e Ptrue d true k Ptrue c Ptruek e    (A-13) 

 

The ,
ˆ

k Ptruee is assumed to be uniformly distributed with zero mean. ,
ˆ

c Ptrue  follows a 

chi distribution with order of 1cn  . 

The process of obtaining the PT standard deviation of failure strength of structural 

element ,e true  based on Eq. (A-13) is shown in Figure A-2. The PTD of standard 

deviation of failure strength of structural element  , ,c Ptrue c Ptruef  is the Chi-distribution. 

Using the two PTDs, the distribution of PT element failure strength of standard deviation 

 , ,e Ptrue e Ptruef  is obtained. 

In the same manner as Eq. (A-7), the combined PTD  , ,e Ptrue e Pturef   is obtained 

using conditional PDF as 

 
     , , , , , , , ,| de Ptrue e Pture e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue c Ptruef f f      




 

 
(A-14) 
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For given ,c Ptrue
, ,
ˆ

e Ptrue
has a uniform distribution which is centered around ,c Ptrue

. 

In this dissertation, 3 , 1d calck 
 is used for simplicity, the PTD of ,

ˆ
e Ptrue

 for given ,c Ptrue
 is 

defined as a conditional PDF:  

 

 
,

, , , , ,

1
if 1

| 2

0 otherwise

e Ptrue

e

e Ptrue e Ptrue c Pcalc e c Ptrue c Ptrue

b
f b



   


 

 

  

(A-15) 

Chi-distribution is used to define PDF of ,
ˆ

c Ptrue for the given number of coupon 

tests cn and the test standard deviation of coupon test ,c test . The PDF of chi-distribution 

is defined as 

 
 

 

  

21 1 2 2 22
| 1

1 2

c c
n n

c

c

e
f n

n








   

 
   

(A-16) 

where the notation  | 1cf n   denotes the value of chi PDF with  and the 

number of coupon tests cn . From Eq. (A-16), the PDF of ,
ˆ

c Ptrue  for the given number of 

specimens cn  is obtained as  

    , ,

,

1
| 1

c

c Ptrue c Ptrue c

c test

n
f f n  




   and ,

,

1c

c Ptrue

c test

n
 




  (A-17) 

In Eq. (A-14),  , , ,|e Ptrue e Ptrue c Ptruef   has finite integrand range so that the equation 

can be rewritten as 

 

   
 

 
,

,

1

, , , , ,

,1

1
d

2

e Ptrue

e Ptrue

b

e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue

c Ptrueb

f f
b







 



  






    (A-18) 

This PDF is a prior distribution of standard deviation of element failure strength. 
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Numerical Scheme 

For the mean element strength, a range of [0.78, 1.22] was found to be large 

enough to capture the updated joint probability distribution, because the initial 

distribution for the mean element strength has very little influence on posterior 

distribution on both tails. Figure 2-5 shows a typical shape of the initial distribution for 

the element mean. The standard deviation is bounded in [0, 0.04], as noted in Table 2-

4. In order to calculate the updated distribution from Bayesian inference, each range is 

discretized into 200 equal intervals, and this discretization generates a 200 by 200 grid. 

The updated joint PDF is calculated at each grid point using Eq. (2-12). Then, the prior 

is updated using a likelihood function with different numbers of element tests; i.e. ne= 1, 

3, and 5. 

The marginal updated distributions are obtained using the updated joint 

distribution as expressed in Eqs. (15) and (16). For the updated marginal element mean 

distribution, conditional PDFs for a given 201 mean element strength are integrated 

over 201 points using Gaussian quadrature with 2 points. Figure A-3 shows an 

equivalent example that has an 8 by 8 grid. The abscissa and ordinate of the grid are for 

mean and for standard deviation, respectively. The superscripts i and j are the 

horizontal and vertical coordinates of the grid. For example, 
3

,e Ptrue  is the value of the 

mean on the third vertical line. The marginal distribution of the updated mean element 

strength is formed by calculating PDF values on 9 given mean values.  3

, ,

upd

e Ptrue e Ptruef  is 

equal to a value obtained by integrating a conditional PDF of the standard deviation for 

3

, ,e Ptrue e Ptrue   over the vertical arrow. 
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Figure  A-1.  The possible true distribution of mean failures strength of specimens and 
the conditional distribution of the element mean failure strength. 
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Figure  A-2.  Process of estimating standard deviation of failure strength. 
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Figure  A-3.  A 8 by 8 grid for obtaining a joint PDF and its marginal PDFs. 
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APPENDIX B 
COPULAS 

An Introduction to Copula 

Copulas and their application are important concepts for modeling a joint CDF of 

correlated random variables. In statistics, definition of copula is stated by Nelson (1999): 

“Copulas are functions that join or “couple” multivariate distribution functions to their 

one-dimentional marginal distribution functions. Alternatively, copulas are multivariate 

distribution functions whose one-dimensional margins are uniform on the interval (0,1).” 

There are two main reasons why copulas are of interest to students: Firstly, as a way of 

studying scale-free measures of dependence and secondly, as a starting point for 

constructing families of bivariate distributions. 

The word copula is a Latin noun which means “a link, tie, bond”. The word copula 

was first employed in a mathematical sense by Abe Sklar (1959) in the theorem 

describing the functions which join together one-dimensional distribution functions to 

form multivariate distribution functions. In this account of copula is a function to link n-

dimensional distributions to their one-dimensional margins. 

Definition of Copula 

According to Sklar’s theorem, if the n-dimensional random variable X=[X1,…Xn]
T 

and each random variable Xi has marginal distributions FXi(xi), then there exists an n-

dimensional copula C such that 

       
1 1,... 1 1,..., ,...,

n nX X n X X nF x x C F x F x  (B-1) 

In this context, a copula is a joint distribution of n-dimensional uniform random 

variables U1 to Un  (inverse CDF of a random variable X has always uniform random 

variable) with  
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    1 1 1,..., Pr ,...,  
ρ n n nC u u U u U u  (B-2) 

where  
1 ,... 1,...,nX X nF x x is a joint CDF at  1,..., nx xx . Note that each marginal 

distribution can has [0 1] range of output. If the marginal distributions are all continuous, 

then the copula C is unique. By the definitions of an n-dimensional copula C and 

marginal CDFs of random variables, the joint probability density distribution of Eq. (B-1) 

is obtained as 

         
1 1,... 1 1

1

,..., ,...,
n n i

n

X X n X X n X i

i

f x x c F x F x f x


   (B-3) 

where the  
iX if x is a marginal PDF of Xi. The joint pdf of the copula C is nth 

derivative of the copula C.  

  
 1

1

1

,...,
,...,

...

n

n

n

n

C u u
c u u

u u




 
 (B-4) 

The joint CDF is expressed as copula in terms of marginal CDFs, it is readily 

possible to model a joint CDF using marginal CDFs. In other words, thus copula 

decouples marginal CDFs and the joint CDF, the joint CDF modeled by the copula can 

be expressed for any type of marginal CDFs. Figure B-1 shows two cases which have 

the same copula but different marginal CDFs. Two marginal CDFs Gaussian and 

Weibull distributions with the same mean and standard deviation (parameters μ=0.918, 

σ=0.044 and a=1, b=5 for Gaussian distribution and Weibull distribution, respectively) 

are used. 

Basic Copulas 

Copulas are mainly categorized into two families; Elliptic copulas and 

Archimedean copulas. Firstly, the elliptic copulas are a class of symmetric copulas, so-

called because the horizontal cross-sections of their joint PDFs take the shape of 

ellipses. Because of their symmetry, a simple linear transformation of variables will 
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transform the elliptic cross-sections to circular ones. Two common elliptic copulas, 

Gaussian and t copulas are widely used. In this study, only Gaussian copula is used. 

Elliptical Copulas 

The Gaussian copula is defined as the joint Gaussian CDF of standard Gaussian 

variables as 

       1 1

1 1,..., | ,..., | ,     
ρ ρ

ρ ρ u
n

n nC u u u u I  (B-5) 

In which Φ and Φρ are the univariate and multivariate standard normal CDFs 

respectively, and ρ is the correlation matrix between the random variables Xi. By the Eq. 

(B-5), it is known that the Gaussian copula is wholly defined by the correlation matrix ρ. 

Φρ is the standard normal CDF, which is expressed as a multi-dimensional function. 

     
 

  1 1
1

1 1

1 1 1

1 1/2

1 1
,..., ... exp[ ] ...

22 det

n

T

u u

n nn

n n

z z

u u dz dz

z z


  
  

 

   
   

        
   
   

 ρ
ρ

ρ
 (B-6) 

PDF of the Gaussian copula, nth derivative of the copula, is expressed as  
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where i i

i

z z

u

 


 
. 

The PDF of the Gaussian copula is finally expressed as 
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Archimedean Copulas 

Archimedean copulas are an associative class of copulas. Whereas the Gaussian 

copula express implicit formula of C with standard normal distributions, most common 

Archimedean copulas admit an explicit formula for the C. Also they allow to model 

dependence with only one parameter. Nelson (1999) address several reasons why 

Archimedean copulas find a wide range of applications: (1) The ease with which they 
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can be constructed, (2) The great variety of families of copulas which belong to this 

class; and (3) The many nice properties possessed by the members of this class.  

The Archimedean copulas belong to the bivariate Archimedean family take the 

form 

       1

1 2 1 2, |       C u u u u  (B-9) 

where    : 0,1 0,  is a generator function satisfying three conditions (Nelson 1999): 1) 

 1 0  , 2)    0 0,1s s
    , (i.e. 

 is strictly decreasing) and 3)    0 0,1s s
    , 

(i.e. 
 is convex) 

Copulas provide CDF of multiple random variables. To derive PDF the copulas, 

Eq. (B-4) is used. Archimedean copula is defined by a single parameter . Note that the 

domain of each Archimedean copula is different, however the   cannot be a reference 

of correlation. The Frank copula with 3   and the Gumbel copula with 3  are not 

representing the same correlation or dependence between two random variables. 

Correlation Measures 

Copulas join two random variables with a specified correlation. Many of the 

properties and correlation measures associated with copulas are scale invariant under 

monotonically increasing transformation of the marginal distributions because copulas 

are invariant under monotonically increasing transformation of the marginal 

distributions. There are several correlation measures and each correlation measure has 

relation with copula. 

Linear Correlation Coefficient (Pearson's Rho) 

Linear correlation coefficient measures the degree of linear relationship between 

two random variables. 
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 

1 2

1 2,


 


X X

cov X X
  (B-10) 

where  1 2,cov X X is covariance between X1 and X2 and σ1 and σ2 are standard 

deviations of X1 and X2. 

Since Pearson's rho only indicates the linear relationship between two random 

variables, it is not capable of measuring nonlinear relationship. Furthermore, the linear 

correlation coefficient based on the covariance of two random variables is not preserved 

by copulas. That is, two pairs of correlated variables with the same copula can have 

different correlations.  

Kendal’s Tau 

The Kendall's tau, usually denoted by τ, is a constant of the copula and is 

preserved by copulas. There are different ways of defining τ. Perfectly correlated 

random variables U1=U2, τ will be 1. Thus the scaling makes τ look like a correlation 

coefficient.  

In most cases, Kendall's tau and Spearman's rho are very similar, and when 

discrepancies occur, it is probably safer to interpret the lower value. More importantly, 

Kendall’s Tau and Spearman’s Rho imply different interpretations. Spearman’s Rho is 

considered as the regular Pearson’s correlation coefficient in terms of the proportion of 

variability accounted for, whereas Kendall’s Tau represents a probability, i.e., the 

difference between the probability that the observed data are in the same order versus 

the probability that the observed data are not in the same order. 

Kendall's tau is calculated by probability of concordance probability of 

discordance. When there are two independently generated paired samples of (xi, yi) and 

(xj, yj), those have a relation of xi < xj and yi < yj or xi > xj and yi > yj, the two random 
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variables are concordant, or else are discordant. Kendall's tau with nearly infinite 

number of samples is expressed as 

      1 2 1 2 1 2 1 20 0              P X X Y Y P X X Y Y   (B-11) 

Practically, two random variables correlation is measured by a limited number of 

samples. The Kendall's tau based on the samples is defined in terms of estimated 

probabilities of concordance and discordance. 

   /
2

 
    

  

nc d
t c d

c d
  (B-12) 

where the c is the number of concordance pairs and d is the number of 

discordance pairs. The c and d are counted by considering all possible pairs of given n 

samples. 

For Archimedean copula, Kendall's tau can be obtained in case of generator 

function   s is given and expressed as  

 
 

 

1

0
1 4








 


s
ds

s
  (B-13) 

Explicit formula of Kendall's tau in terms of the parameter  is known, Table B-2 

provides the formulas. 

Bivariate Gaussian copula is defined by linear correlation coefficient ρ, but there is 

no explicit function for Kendall's tau in terms of the ρ. 

Summaries 

Copulas, such as elliptic copulas and Archimedean copulas, are defined by one 

parameter. As an invariant correlation measure, Kendall's tau provides correlation 

degree and parameter of copula is expressed as an implicit or explicit function in terms 

of τ. When samples are generated, the Kendall's tau should be estimated with Eq. 

(B.12) and then parameter of desirable copula is calculated with Table B-2. 
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Correlation between two random variables is modeled by marginal CDFs and 

copula. Identification of the marginal CDFs is required, goodness of fit (GOF) test to 

identify the best fit distribution.  

Goodness to Fit Test 

The adequacy of hypothesized CDF is checked by comparing it to empirical CDF 

constructed from data. There are several GOF tests; χ2, Kolmogorov-Smirnov (K-S) and 

Cramer-von Mises. The χ2 test compares the difference between the empirical PDF and 

the hypothesized PDF and requires sufficient data. The Cramer-von Mises test is known 

as a better method than the K-S test. However the method is applicable to limited 

distributions which should feature symmetric and right-skewed CDF. In this study, K-S 

test is used to identify the best fit distribution. The K-S test is described well by Haldar 

and Mahadevan (2000).  

The empirical CDF is defined as 

  
1

1




  i

n

n X x

i

F x I
n

  (B-14) 

where iX xI is the indicator function, equal to 1 if iX x  and equal to 0 otherwise. 

The K-S test measures the difference between the empirical CDF and the 

hypothesized CDF; finally pick up the maximum difference as 

    max | | n nD F x F x   (B-15) 

where  nF x and  F x are empirical CDF and hypothesized CDF, respectively. With 

test statistics, Dn is tested to decide its acceptance or denial by specified confidence 

level 1  . The hypothesis test is defined as 

 1

0

Nullhypothesis: :

Alternativehypothesis : :






n

n

H F F

H F F
  (B-16) 
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If 0.05  and the hypothesized CDF is accepted, then it has 95 confidence of its 

acceptance.   

  Pr 1   n nD D   (B-17) 

where 

nD is critical value (CV) at the confidence level of 1  . It is given as a table 

by Haldar and Mahadevan (2000). If the p-value is larger than  , the null hypothesis is 

accepted. If more than one hypothesis CDFs are accepted, a hypothesis having largest 

p-value is chosen because the p-value indicates how the null hypothesis is strongly 

accepted. Marsaglia and Wang (2003) describes formulas to calculate the p-value. 

In this study, 5 distribution candidates, Gaussian (normal), Weibull (extreme type 

III), Gamma, Lognormal and Gumbel (extreme type II) are used as hypothesis CDFs 

and it is shown in Table. B-3. Parameters of each hypothesis CDF can be numerically 

calculated from mean and standard deviation. 

Goodness of Fit for Buckling Load and Strain of the Curved Composite Laminate 
Panel 

To identify the best fit copula, identifying the best fit marginal CDFs should be 

carried out. Correlation measure, the Kendall's tau is invariant covariance measure for 

copula. To find best fit copula and marginal CDFs, we performed the following 

procedure: 

However buckling load and surface strain are all negative values, normal 

distribution is the only distribution to fit the data. Also copula has restriction of the 

Kendall's tau so that the Kendall's tau should be positive (positive correlation).  So that  

two transformation, 1 1
  X X and 2 21  X X are used to identify marginal CDFs. 

For buckling load, Gamma distribution is the best fit CDF and K-S test strongly 

supports the decision. For surface strain, all K-S test results are not so positive. Normal, 
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Gamma and Lognormal distribution are accepted but those p-values are quite similar so 

that Normal distribution is selected for convenience sake. Thus we can use normal CDF 

to fit the surface strain, X1 transformation is not required.  

Transformation for both random variables are 
1 1
  X X and 

2 2
 X X , Kendall's tau is 

0.3363. With this transformed random variables, the best fit copula will be identified. 
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Table B-1.  Formulas of Copulas (  1 2, |C u u ), PDF formulas (  1 2, |c u u ), generator 

functions, and domains of correlation parameters. (for Gumbel, 
1 1lnu u  and 

2 2lnu u  ) 

Copula  1 2, |C u u   
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Table B-2.  Kendall's tau and domain of τ. 

Copula    f  Domain of   

Clayton 
2

1
2 




 (0,1]   

Gumbel 11    [0,1]   

Frank 
0

4 1
1 1

1



 

 
  

 
 t

t
dt

e
 [ 1,1] \{0}    

 

Table B-3.  CDF candidates and distribution statistics. (for Gumbel, γ is Euler-
Mascheroni constant of 0.57721566…) 

Distribution Distribution statistics Domain of μ Domain of σ 

Normal 2,   ( , )    [0, )    

Weibull 
2 2 21 2

1 , 1  
   

         
   

a
b b

 [0, )   [0, )    

Gamma 
2 2,  ab ab  [0, )   [0, )    

Lognormal  
2

2 22 22 , 1 


  
b

a
b a be e e  [0, )   [0, )    

Gumbel1 
2

2 2,
6


    a b b  ( , )    [0, )    
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Table B-4.  Fitting random data to CDF. 

1. Transform data to make it applicable to CDF candidates (i.e. domain of random 
variable X from lognormal distribution is [0, ) X ) 

2. Calculate marginal empirical CDFs with the data 
3. Perform GOF test to identify the best fit CDFs 
4. Calculate multivariate CDF with the data  
5. Using the best fit CDFs, perform GOF test to identify the best fit copula 

 

Table B-5.  K-S test to identify the best fit CDF for buckling load and surface strain. 

 p-value p-value 
 Buckling load Surface strain 

Normal 0.8534 0.3006 
Weibull (extreme typeIII) 0.0001 0.0058 
Gamma 0.9338 0.2998 
Lognormal 0.8341 0.3001 
Gumbel (extreme type I) 0.0000 0.0058 
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Figure  B-1.  Joint PDF contours for the same copula (τ=0.5) with different marginal 

CDFs. A) Gaussian copula + Gaussian marginal CDFs and B) Gaussian 
copula + Weibull marginal CDFs 
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Figure  B-2.  Gaussian, Clayton, Gumbel and Frank copula with standard normal 

marginal CDFs (τ=0.5). 
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Figure  B-3.  Gaussian, Copulas and scattered data plots ( =0.3363). A) Gaussian 

copula B) Clayton copula C) Gumbel copula and D) Frank copula. 

 



www.manaraa.com

 

147 

LIST OF REFERENCES 

1. Oberkampf, W.L., Deland, S.M., Rutherford, B.M., Diegert, K.V., and Alvin, K.F. 
(2002), Error and Uncertainty in Modeling and Simulation. Reliability Engineering 
and System Safety, Vol. 75, pp. 333-357. 

 
2. Composite Materials Handbook, MIL-HDBK-17-1F, Department of Defense, 17 

June 2002. 
 

3. ASM Handbook Vol. 21 Composites, ASM International, 2001. 
 
4. An, A., Acar, A., Haftka, R.T., Kim, N.H., Ifju, P.G, and Johnson, T.F., (2008) 

“Being Conservative with a Limited Number of Test Results,” Journal of Aircraft, 
45(6), 1969-1975. 

 
5. Acar, E., Haftka, R.T., Kim, N.H.(2010) “Effects of Structural Tests on Aircraft 

Safety ” AIAA Journal ,Vol 48(10), 2235–2248. 
 
6. Kumar, S., Villanueva, D., Sankar, B.V., and Haftka, R.T., “Probabilistic 

Optimization of Integrated Thermal Protection System,” AIAA-2008-5928, 12th 
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, 
British Columbia, Canada, Sept 10-12, 2008. 

 
7. Bharani Ravishankar., "Probabilistic Validation Metrics for Industrial Engineering 

Analysis Models," AIAA-2012-1443, 53rd IAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics and Materials Conference, Honolulu, Hawaii, United States, 
April 23-26, 2012. 

 
8. T. Ishikawa, Reduction of Development Costs of Full Composite Aero-Structure, 

ICAS Biennial Workshop, 2011 Sept. 5, 2001, Stockholm, Sweden. 
 
9. Gates, D., Boeing 787 wing flaw extends inside plane, The Seattle Times, July 30, 

2009. 
 
10. Domke, B., Boeing 787 Lessons Learnt, Airbus, Ref. Pro813399, issue 2, October 

20, 2008. 
 
11. Norris, G., Root Cause, Aviation Week & Space Technology, Vol. 172 Issue 7, 

p24-26, Feb 15, 2010. 
 
12. Ground Test Experience with Large Composite Structures for Commercial 

Transports, NASA Technical Memorandum TM 84627, March 1983. 
 
13. M. Evans, N. Hastings, and B. Peacock, Statistical distributions, Wiley, New York, 

1993. 
 



www.manaraa.com

 

148 

14. Smarslok, B., Speriatu, L., Schulz, W., Haftka, R. T., Ifju, P., Johnson, T. F., 
“Experimental uncertainty in Temperature Dependent Material Properties of 
Composite Laminates,” Society for Experimental Mechanics Annual Conference, 
No. 241, St. Louis, MO, June, 2006. 

 
15. Kight, N. F., and Starnes, J. H., “Postbuckling Behavior of Axially Compressed 

Graphite-Epoxy Cylindrical Panels With Circular Holes,” Journal of Pressure 
Vessel Technology 107: 394-402, 1985. 

 
16. Smarslok, B. P., Haftka, R. T., and Ifju, P., “A Correlation Model for 

Graphite/Epoxy Properties for Propagating Uncertainty to Strain Response,” 23rd 
Annual Technical Conference of the American Society for Composites, Memphis, 
Tenn, 2008. 

 
17. M. W. Hilburger and J. H. Starnes Jr., “Effects of imperfections on the buckling 

response of compression-loaded composite shells,” International Journal of Non-
Linear Mechanics 37 (2007) 623-643. 

 
18. C. Park, N. H. Kim, and R. T. Haftka, “Estimating Probability of Failure of 

Composite Laminated Panel with Multiple Potential Failure Modes“ AIAA-2012-
1592, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, Honolulu, Hawaii, Apr. 23-26., 2012. 

 
19. Acar, E, Kale, A., and Haftka, R. T., “Comparing Effectiveness of Measures that 

Improve Aircraft Structural Safety,” Journal of Aerospace Engineering, Vol. 20, No. 
3, July 2007, pp. 186-199. 

 
20. Jiao, G., and Moan, T., "Methods of reliability model updating through additional 

events," Structural Safety, Vol. 9, No. 2, 1990, pp. 139-153. 
 
21. A. Urbina, S. Mahadevan and T. L. Paez, (2011) "Quantification of margins and 

uncertainties of complex systems in the presence of aleatoric and epistemic 
uncertainty", Reliability Engineering & System Safety, 96 (9): 1114-1125. 

 
22. I. Park, H. K. Amarchinta, R. V. Grandhi, (2010) "A Bayesian approach for 

quantification of model uncertainty", Reliability Engineering & System Safety, 95: 
777-785. 

 
23. J. M. McFarland, B. J. Bichon, Bayesian model averaging for reliability analysis 

with probability distribution model from uncertainty. 50th 
AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and material 
conference, Palm Springs, CA, 2009. 
 



www.manaraa.com

 

149 

24. Lincoln, J. W., "USAF Experience in the Qualification of Composite Structures," 
Composite Structures: Theory and Practice, ASTM STP 1383, P. Grant and C. Q. 
Rousseau, Eds., American Society for Testing and Materials, West 
Conshohocken, PA. 2000. pp.3-11. 

 
25. Kale, A.A., Haftka, R.T., and Sankar, B.V., (2008) “Efficient Reliability Based 

Design and Inspection of Stiffened Panels against Fatigue,” Journal of Aircraft, 45 
(1): 86-97. 

 
26. Park, C., Matsumura, T., Haftka, R. T., Kim, N. H. and Acar.,E., “Modeling the 

effect of structural tests on uncertainty in estimated failure stress“ 13th 
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Fort Worth, 
Texas, Sept. 13-15, 2010. 

 
27. Beckman  (1980) A New Family of Probability Distributions With Applications to 

Monte Carlo Studies, Journal of the American Statistical Association, Vol. 75, No. 
370. 276- 279. 

 
28. M. McDonald and S. Mahadevan, Uncertainty Quantification and Propagation in 

Multidisciplinary Analysis and Optimization, AIAA-2008-6038, 12th AIAA/ISSMO 
Multidisciplinary Analysis and Optimization Conference, 2008. 

 
29. E.J. Dudewicz and Karian, Z.A, The Extended Generalized Lambda Distribution 

(EGLD) for Fitting Distribution with Moments,  (1996) American Journal of 
Mathematical and Management Science 16: 271-332. 

 
30. E. L. Lehmann and G. Casella, Theory of point prediction, Springer-Verlag, New 

York, 1998. 
 
31. R. E. Neapolitan, Learning Bayesian Network, Pearson Education, New Jersey, 

2004. 
 
32. Fawcett A, Trostle J, Ward S. "777 empennage certification approach," 11th 

international conference of composite materials, Gold Coast, Australia, 14–18 
July, 1997. 

 
33. FAA Advisory Circular 20-107A, Composite Aircraft Structure, 1984; and 

companion document by the JAA, ACJ 25.603, Composite Aircraft Structure 
(Acceptable Means of Compliance), 1986. 

 
34. Pattabhiraman, S., Haftka, R. T., Kim, N. H., “Advantages of condition- based 

maintenance over scheduled maintenance using structural health monitoring 
systems”, Journal of Reliability and System Safety. 

 
35. Stanley,  G. M., Continuum-Based Shell Elements, Ph.D. Dissertation, Department 

of Mechanical Engineering, Stanford University, 1985. 



www.manaraa.com

 

150 

36. Qu, X., Haftka, R.T., Venkataraman, S., and Johnson, T.F., “Deterministic and 
Reliability-Based Optimization of Composite Laminates for Cryogenic 
Environments,” AIAA Journal, 41(10), pp. 2029-2036, 2003. 

 
37. Noh, Y., K. K. Choi, Lee, I., (2010) “Identification of marginal and joint CDFs using 

Bayesian method for RBDO,“ Journal of Structural Multidisciplinary Optimization 
,Vol 40, 35-51. 

 
38. Schmidt, R. (2002). Tail dependence for elliptically contoured distributions. Math. 

Methods Oper. Res. 55, 301–327. 
 
39. Elishakoff, "Safety Factors and Reliability; Friends or Foes?", Kluwer Academic 

Publishers, 2004. 
 
40. D.M. Neal, W.T. Matthews, M.G. Vangel and T. Rudalevige; A Sensitivity Analysis 

on Component Reliability from Fatigue Life Computations; U.S. Army Materials 
Technology Laboratory, Report No. MTL TR 92-5; February 1992. 

 
41. R. E. Melchers, Important Sampling in Structural Systems, Structural Safety, 1989. 
 
42. Melchers R. E., Structural Reliability Analysis and Prediction, New York: Wiley, pp. 

73-83, 1999. 
 
43. A. Dey, and S. Mahadevan, Ductile Structural System Reliability Analysis using 

Adoptive Importance Sampling, Structural Safety (20), 1998: 137-154. 
 
44. Zheng Y., Das P. K., Improved response surface method and its application to 

stiffened plate reliability analysis, Engineering Structures, Vol. 22, pp. 544-551, 
2000. 

 
45. Ba-abbad, M. A., Nikolaidis, E., and Kapania, R. K., “New Approach for System 

Reliability-Based Design Optimization" AIAA Journal, Vol. 44, No. 5, 2003, pp 
1087-1096. 

 
46. Haldar, A., and Mahadevan, S., Probability, Reliability and Statistical Methods in 

Engineering. Design, John Wiley & Sons, New York, 2000. 
 
47. M. Hohenbichler and R. Rackwitz First-Order Concepts in System Reliability. 

Structural Safety, 1983:177-188. 
 
48. Vanmarcke EH. Matrix form formulation of reliability analysis and reliability-based 

design. Comput Struct 1973:757–70. 
 
49. Ditlevsen O. Narrow reliability bounds for structural systems. J Struct Mech 

1979;7:453–72. 
 



www.manaraa.com

 

151 

50. Y. Noh, Input model uncertainty and reliability-based design optimization with 
associated confidence level, Ph D. dissertation, Department of Mechanical 
Engineering, University of Iowa, 2009. 

 
51. C. Park, N. H. Kim, R. T. Haftka, "The Effect of Ignoring Dependence between 

Failure Modes on Evaluating Structural Reliability", 10th World Congresses of 
Structural and Multidisciplinary Optimization, Orlando, USA, May, 2013. 

 
52. Sklar, A. (1959), "Fonctions de répartition à n dimensions et leurs marges", Publ. 

Inst. Statist. Univ. Paris 8: 229–231. 
 
53. Nelson R.B. (1999), An Introduction to Copula, Springer, New York. 
 
54. H. Joe, Multivariate Models and Dependence Concepts (1997). 
 
55. P. Georges, A-G. Lamy, E. Nicholas, G. Quibel, T. Roncalli, Multivariate survival 

modeling: a unified approach with copulas, 2001. 
 
56. Ang AH-S, Abdelnour J, Chaker AA. Analysis of activity networks under 

uncertainty. J Eng Mech Div ASCE 1975;101(EM4):373–87. 
 
57. Venter, G.G., 2001. Tails of copulas. In: Proceedings ASTIN Washington, USA, 

pp. 68–113. 
 
58. G. Frahm , M. Junker, and R. Schmidt (2006). Estimating the tail-dependence 

coefficient: Properties and pitfalls, Insurance: Mathematics and Economics 37, 80-
100. 

 
59. I. Kroo, 2004, “Collectives and complex system design,” “Von Karman Institute 

(VKI) Lecture Series on Optimization Methods and Tools for 
Multicriteria/Multidisciplinary Design”, von Karman Institute for Fluid Dynamics, 
Rhode-Saint-Genèse, Belgium. 

 
60. I. Kroo, 2004, “Innovations in Aeronautics,” 42nd AIAA Aerospace Sciences 

Meeting, Reno, NV, January 5-8, 2004. 
 
61. C. Park, N. H. Kim, and R. T. Haftka, “Effects of Structural Tests on Aircraft Design 

Safety” ASME 2011 International Design Engineering Technology Conference & 
Computer and Information in Engineering Conference, Washington, DC, USA, 
August. 28-31, 2011. 

 
62. Cairns, Douglas S. Class Lecture. Introduction to Aerospace. Montana State 

University, Bozeman, MT. Spring 2010. 
 
63. Niu Michael Chun-Yung. Airframe Structural Design: Principles and Practices. 

AIAA Education Series, 1988. 



www.manaraa.com

 

152 

64. Owen, D. B., "Factors for One sided Tolerance Limits and for Variables Sampling 
Plans", Sandia Corp. Monograph SCR-607, 1963. 

 
65. Villanueva, D., Haftka, R.T., Sankar, B.V. (2011). Including the Effect of a Future 

Test and Redesign in Reliability Calculations, AIAA Journal, Vol. 49 (12), pp. 
2760-2769. 

 
66. Villanueva, D., Haftka, R.T., Sankar, B.V. (2010). Including Future Tests in the 

Design and Optimization of an Integrated Thermal Protection System, AIAA 2010-
2597, 12th AIAA Non-Deterministic Approaches Conference, Orlando, FL. 

 
67. Matsumura, T. and Haftka, R.T., (2013), "Reliability Based Design Optimization 

Considering Future Redesign With Different Epistemic Uncertainty Treatments," 
Journal of Mechanical Design, Vol. 135(9), 091006-091014. 

 
68. Joo ho Choi, Dawn An, Jun ho Won, Bayesian Approach for Structural Reliability 

Analysis and Optimization Using the Kriging Dimension Reduction Method, ASME 
Journal of Mechanical Design 132(5),051003,2010.05. 

 
69. Oberkampf, W. L.; Diegert, K. V.; Alvin, K. F.; and Rutherford, B. M. 1998: 

Variability, Uncertainty, and Error in Computational Simulation. AIAA/ASME Joint 
Thermophysics and Heat Transfer Conference, ASME-HTD-Vol. 357-2, pp. 259–
272. 

 
70. Oberkampf, W. L. 1998: Bibliography for Verification and Validation in 

Computational Simulation, SAND98-2041, Sandia Natl. Lab. 
 
71. James M. Whitney, Structural Analysis of Laminated Anisotropic Plates, 

Technomic, Lancaster, Pennsylvania, 1987. 
 
72. Schillinger, D., Stochastic FEM Based Stability Analysis of I-Sections With 

Random Imperfections, Diploma Thesis, Department of Civil Engineering, 
University of Stuttgart, 1985. 

 
73. Park, O., Haftka, R.T., Sankar, B.V., Starnes, J.H., and Nagendra, S., “Analytical-

Experimental Correlation for a Stiffened Composite Panel Loaded in Axial 
Compression,” Journal of Aircraft, 38 (2), 379-387, 2001. 

 
74. Nagendra, S., Jestin, D., Gürdal, Z., Haftka, R.T., and Watson, L.T., “Improved 

genetic Algorithms for the Design of Stiffened Composite Panels,” Computers & 
Structures, Vol. 58, No. 3, pp. 543-555, 1996. 
 



www.manaraa.com

 

153 

75. Matsumura, T., Haftka, R.T. and Sankar, B.V. “Reliability Estimation Including 
Redesign Following Future Test for an Integrated Thermal Protection System” 9th 
World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan, 
June 14-17, 2011. 

 
76. Villanueva, D., Haftka, R.T., Sankar, B.V. “Accounting for Future Redesign in the 

Optimization of an Integrated Thermal Protection System“, AIAA-2012-1933, 14th 
AIAA Non-Deterministic Approaches Conference, Honolulu, HI, 2012. 

 
77. Joseph M. Manter and Donald B. Paul, Airframe Structures Technology for Future 

Systems, ICAS 2000. 
 
78. X. Jiang, S. Mahadevan, (2007) "Bayesian risk-based decision method for model 

validation under uncertainty", Reliability Engineering & System Safety, 92: pp. 707-
718. 

 
79. Simulia, D. C. S. "ABAQUS 6.11 Analysis User's Manual." Abaqus 6.11 

Documentation (2011): 22-2. 
 
80. J. Li, J. Chen, and W. Fan. The Equivalent Extreme-value Event and Evaluation of 

the Structural System Reliability, Structural Safety 2007;29(2):112-13. 
 
81. Oberkampf, W., J. Helton, C. Joslyn, S. Wojtkiewicz, and S. Ferson. Challenge 

problems: uncertainty in system response given uncertain parameters. Reliability 
Engineering and System Safety, 85(1-3) (2004). 

 
82. Acar, E. and Haftka, R.T. (2007) “Reliability-Based Aircraft Structural Design Pays, 

Even with Limited Statistical Data” Journal of Aircraft ,Vol 44(3), 812–823. 
 

83. Park, Chanyoung, Nam H. Kim, and Raphael T. Haftka. (2013) "How coupon and 
element tests reduce conservativeness in element failure prediction." Reliability 
Engineering & System Safety, Vol 123, 123-136. 

 
 



www.manaraa.com

 

154 

BIOGRAPHICAL SKETCH 

Chan-Young Park graduated from Seoul National University in 2003 with a 

Bachelor of Science in Naval Architecture and Ocean Engineering. As an 

undergraduate student he participated in a Human Powered Vessel competition and his 

team was awarded with the first prize twice. He also worked as an undergraduate 

research assistant for an structural optimization research. He was working at MIDAS IT 

as a developer over 3 years. He had experience in developing commercial finite 

element analysis software. He joined the University of Florida in 2010. His research 

interests include: design under uncertainty, uncertainty quantification, finite element 

methods and structural optimization. 


